Что такое электронная подпись — простым языком для новичков мира цифровой экономики. Обновление системы защиты. Документы для ЭЦП

Даже те бухгалтеры, которые давно сдают отчетность через интернет, не всегда представляют, как работает один из главных элементов системы сдачи отчетности — электронная цифровая подпись (ЭЦП). Между тем такие знания позволяют предотвратить некоторые элементарные ошибки, которые могут привести к конфликтам с инспекцией. Кроме того, бухгалтер, получивший представление об основах технологии ЭЦП, будет тратить на общение с операторами call-центров гораздо меньше времени.

Создание ЭЦП

Существуют разные способы сформировать электронную цифровую подпись. На практике самым удобным и распространенным способом является создание ЭЦП с помощью двух ключей — открытого и закрытого. Оба этих ключа создаются с помощью специальной шифровальной программы (например, «Крипто-про»). Для создания закрытого ключа необходимо либо хаотично двигать мышку, либо бессистемно нажимать клавиши на клавиатуре. Программа преобразует эти движения в очень длинный набор символов (его размер 512 бит; о том, много это или мало — ниже, в разделе «Дополнительная информация»). Так создается закрытый ключ.

Затем та же программа на основании закрытого ключа создает открытый ключ (сразу отметим, что обратный процесс — подобрать закрытый ключ по открытому ключу — невозможен). Открытый ключ публикуется на сайтах удостоверяющих центров и спецоператора связи, чьими услугами пользуется владелец ключа, а вот закрытый ключ следует хранить со всеми возможными мерами предосторожности.

Зачем нужны удостоверяющие центры

Решают важнейшую задачу: они подтверждают подлинность информации о владельце ключа и его полномочиях. Если бы УЦ не существовало, любой, кто купил бы программу для шифрования, мог объявить свой открытый ключ ключом главного бухгалтера «Газпрома» или начальника инспекции по крупнейшим налогоплательщикам.

Поэтому бухгалтер (руководитель), для оформления электронной цифровой подписи должен предоставить в УЦ документы, удостоверяющие его личность, доверенность от компании и написать запрос на выдачу сертификата открытого ключа подписи. Центр выдает электронный и бумажный сертификаты открытого ключа подписи. Электронный сертификат — это файл, который представляет из себя открытый ключ клиента, подписанный ЭЦП удостоверяющего центра. Бумажный сертификат содержит следующие данные: открытый ключ ЭЦП, ФИО его владельца, срок действия сертификата (обычно один год), область применения ключа (перечень документов, которые можно подписывать с помощью ключа, на который выдан сертификат), информация об организации, представителем которой является владелец ключа.

Соответственно, после оформления документов в УЦ у клиента на руках оказывается бумажный сертификат и носитель информации (ру-токен, флэшка, дискета) на котором записаны следующие файлы: открытый ключ, закрытый ключ, сертификат открытого ключа.

Открытым шифруем, закрытым расшифровываем

Допустим, бухгалтер хочет отправить в инспекцию декларацию. Он формирует файл с отчетностью (вносит данные организации в электронный формат декларации). Затем он подписывает файл с отчетностью своим закрытым ключом. Подписание образует новый, оригинальный файл. В подписанном ЭЦП документе ни получатель, ни отправитель уже не могут изменить ни одного символа — подобное нарушение целостности документа легко выявляется при проверке с помощью сертификата открытого ключа.

Далее программа, с помощью которой бухгалтер отправляет отчетность, шифрует декларацию открытым ключом инспекции. Зашифрованный файл отправляется в инспекцию. Налоговики получают файл и расшифровывают его своим закрытым ключом. Затем проверяют ЭЦП плательщика с помощью реестра сертификатов открытых ключей (такая проверка при приеме отчетности осуществляется автоматически). Проверка дает ответ на два вопроса: была ли после подписания ЭЦП плательщика нарушена целостность документа и действительно ли данная ЭЦП принадлежит плательщику, сдавшему отчетность.

После проверки инспекция отправляет организации протокол входного контроля. Инспектор подписывает протокол своим закрытым ключом. Затем шифрует протокол открытым ключом компании и направляет файл с зашифрованной информацией в адрес компании. Бухгалтер открывает зашифрованную в файле информацию своим закрытым ключом.

Теоретически перехватить зашифрованный файл может кто угодно. Однако расшифровать файл, направленный в адрес инспекции, можно только имея закрытый ключ инспекции. Соответственно, зашифрованный файл, направленный в компанию, может открыть только тот, у кого есть закрытый ключ компании.

Что будет, если небрежно хранить закрытый ключ

Самая главная проблема, которой может обернуться для компании небрежное хранение закрытого ключа — это так называемая компрометация ключа. То есть доступ к закрытому ключу посторонних. Если ключ хранится на дискете, которая лежит на столе бухгалтера или ключ записан на жесткий диск бухгалтерского компьютера, то компания рискует нарваться на серьезные неприятности. Имея закрытый ключ, какой-нибудь недоброжелатель может отправить за компанию заведомо ложную отчетность. Например, задолго до срока, в который бухгалтер планирует сдать отчетность, послать в инспекцию декларацию по НДС с огромными суммами к возмещению. В этом случае компании как минимум грозит утомительное разбирательство с налоговиками, которые уже приняли «ложную» отчетность и занесли ее в свою базу. А как максимум (если бухгалтер вовремя не обнаружит факт «ложной» отправки) — истребование документов в ходе углубленной камеральной проверки, доначисления, пени, штрафы и судебный процесс.

Еще одно следствие небрежного хранения — возможная утрата закрытого ключа. Ключ могут украсть. Его можно потерять. Если закрытый ключ записан на ненадежном носителе — дискете, есть опасность ее механического повреждения. Кроме того, дискета может затеряться среди других дискет, информацию с нее можно стереть по ошибке.

Утрата действующего ключа накануне сдачи отчетности приводит к тому, что вовремя отправить декларацию через интернет не удастся. Дело в том, что никто не сможет выдать организации «дубликат» закрытого ключа — у удостоверяющего центра его просто-напросто нет, а воссоздать закрытый ключ по открытому невозможно. Без закрытого ключа компания не сможет подписать отчетность и расшифровать протоколы из инспекции, где сообщается о том, принята ли отчетность или не принята из-за каких-то ошибок. Единственный выход — получать новые ключи. Если эта процедура затянется, и информацию о новых ключах инспекция примет к сведению с опозданием, декларации придется сдавать лично или отправлять обыкновенной почтой.

Закрытые ключи, у которых истек срок действия, тоже следует хранить бережно. Этот тезис особенно актуален для бухгалтеров, которые хранят все сданные отчеты не на своем компьютере, а в зашифрованном виде на сервере спецоператора связи. Если они лишатся закрытого ключа, действовавшего, скажем, в 2006 году, то они не смогут расшифровать собственную налоговую отчетность за этот год.

Дополнительная информация
Насколько надежна ЭЦП

Как мы уже упоминали, размер закрытого ключа ЭЦП, используемой при сдаче отчетности, составляет 512 бит. Для того, чтобы понять, какую степень надежности обеспечивает такой размер ключа, приведем пример. На подбор ключа размером 72 бита у группы исследователей, использовавших сотни компьютеров, ушло три года. Размер нашего ключа — 512 бит. Условия проведенного эксперимента позволяют вычислить количество лет, которое потребуется на его подбор. Этот срок выражается числом со 130-ю нулями. Для сравнения: возраст Земли оценивается в 4,5 миллиарда лет, а миллиард — число с 9 нулями.

Чем ЭЦП отличается от старых шифровок

Одним из первых шифрование информации (криптографию) на практике применил император Гай Юлий Цезарь. Он отправлял в удаленные провинции послания, где вместо буквы A ставил букву D, вместо буквы B — букву E и т д. То есть использовал алфавитный сдвиг на три буквы. Этого было достаточно, чтобы враги, перехватившие послание, не могли его расшифровать. Зато адресаты в провинциях, которым секрет шифра был известен, легко читали распоряжения из столицы.
С тех пор прошло больше двух тысяч лет. За это время было придумано огромное множество шифров (у Цезаря это был простейший алфавитный сдвиг на 3 буквы, а в аппаратах-шифраторах второй мировой войны уже применялись жуткие тысячезначные числа). Однако вплоть до недавнего времени ничего принципиально нового наука о шифровании не изобретала. Суть оставалась прежней: до сеанса документооборота отправитель сообщения и его получатель должны были разделить секрет шифра (для чего требовалась либо личная встреча, либо использование каких-то сверхнадежных каналов связи). Такое шифрование, при котором участникам документооборота необходимо передать друг другу секрет шифра, называется симметричная криптография.

Однако в семидесятые годы прошлого века был изобретен принципиально новый способ криптографической защиты информации. Он не требует предварительного обмена секретом шифра, поэтому и был назван ассиметричной криптографией. Именно такой способ шифрования используется в работе ЭЦП. Чтобы послать кому-либо зашифрованную информацию, достаточно самому иметь ключи ЭЦП и знать открытый ключ адресата.

Введение.

Учебные вопросы (основная часть):

1. Общие сведения об электронных ключах.

2. Диодные ключи.

3. Транзисторные ключи

Заключение

Литература:

Л.15 Быстров Ю.А., Мироненко И.В. Электронные цепи и устройства,-М: Высшая школа. 1989г. – 287с. с. 138-152,

Л.19 Браммер Ю.А., Пащук А.В. Импульсные и цифровые устройства. - М.: Высшая школа, 1999 г., 351 с. с. 68-81

Л21. Ф. Опадчий, О.П. Глудкин, А.И. Гуров «Аналоговая и цифровая электроника», М.- Горячая линия- Телеком, 2000г с. 370-414

Учебно-материальное обеспечение:

Текст лекции Введение

Известно, что для обеспечения работы импульсных устройств и получения импульсных колебаний необходимо осуществлять коммутацию нелинейного элемента (замкнуть, разомкнуть).

Такой режим работы нелинейного элемента называется ключевым, а устройство, в состав которого входит данный нелинейный элемент - электронным ключом.

1. Общие сведения об электронных ключах.

Электронным ключом называется устройство, которое под воздействием управляющих сигналов осуществляет коммутацию электрических цепей бесконтактным способом .

Назначение электронных ключей.

В самом определении заложено назначение “Включение - выключение”, “Замыкание - размыкание” пассивных и активных элементов, источников питания и т.д.

Классификация электронных ключей.

Электронные ключи классифицируются по следующим основным признакам:

    По виду коммутирующего элемента:

  • транзисторные;

    тринисторные, динисторные;

    электровакуумные;

    газонаполняемые (тиратронные, тигатронные);

    оптронные.

    По способу включения коммутирующего элемента по отношению к нагрузке.

    последовательные ключи;

Рис. 1

    параллельные ключи.

Рис. 2

    По способу управления.

    с внешним управляющим сигналом (внешним по отношению к коммутируемому сигналу);

    без внешнего управляющего сигнала (сам коммутируемый сигнал и является управляющим).

    По виду коммутируемого сигнала.

    ключи напряжения;

    ключи тока.

    По характеру перепадов входного и выходного напряжений.

    повторяющие;

Рис. 3

    инвертирующие.

Рис. 4

    По состоянию электронного ключа в открытом положении.

    насыщенный (электронный ключ открыт до насыщения);

    ненасыщенный (электронный ключ находится в открытом режиме).

    По количеству входов.

    одновходовые;

Рис. 5

    многовходовые.

Рис. 6

Устройство электронных ключей.

В состав электронного ключа обычно входят следующие основные элементы:

    непосредственно нелинейный элемент (коммутирующий элемент);

Принцип действия электронного ключа.

Рис. 7

Принцип действия рассмотрим на примере идеального ключа.

На рисунке:

  1. U вх - напряжение, управляющее работой ключа;

    R - сопротивление в цепи питания;

    E - напряжение питания (коммутируемое напряжение).

В состоянии включено (ключ SA замкнут), напряжение на выходе U вых =0 (сопротивление R замкнутого идеального ключа равно нулю).

В состоянии выключено (ключ SA разомкнут), напряжение на выходе U вых =Е (сопротивление R разомкнутого идеального ключа равно бесконечности).

Такой идеальный ключ производит полное размыкание и замыкание цепи, так, что перепад напряжения на выходе равен Е.

Однако реальный электронный ключ далек от идеального.

Рис. 8

Он имеет конечное сопротивление в замкнутом состоянии -R вкл зам, и в разомкнутом состоянии - R выкл разом. Т.е. R вкл зам >0, R выкл разом <. Следовательно, в замкнутом состоянии U вых =U ост >0 (остальное напряжение падает на ключе).

В разомкнутом состоянии U вых

Таким образом, для работы электронного ключа необходимым является выполнение условия R выкл разом >> R вкл зам .

Основные характеристики электронных ключей.

    Передаточная характеристика.

Это зависимость выходного напряжения U вых от входного U вх: U вых =f(U вх).

Если нет внешнего управляющего сигнала, то U вых =f(E).

Такие характеристики показывают насколько близок электронный ключ к идеальному.

    Быстродействие электронного ключа - время переключения электронного ключа.

    Сопротивление в разомкнутом состоянии R выкл разом и сопротивление в замкнутом состоянии R вкл зам.

    Остаточное напряжение U ост.

    Пороговое напряжение, т.е. напряжение, когда сопротивление электронного ключа резко меняется.

    Чувствительность - минимальный перепад сигнала, в результате которого происходит бесперебойное переключение электронного ключа.

    Помехоустойчивость - чувствительность электронного ключа к воздействию импульсов помех.

    Падение напряжение на электронном ключе в открытом состоянии.

    Ток утечки в закрытом состоянии.

Применение электронных ключей.

Электронные ключи применяются:

    В простейших схемах формирования импульсов.

    Для построения основных типов логических элементов и основных импульсных устройств.

Таким образом, электронные ключи это устройства, осуществляющие коммутацию бесконтактным способом.

Электронная подпись - это математическая схема, предназначенная для отображения подлинности электронных сообщений либо документов. Действительная цифровая подпись предоставляет все основания для получателя полагать, что сообщение было создано с помощью известного отправителя, что оно действительно отправлено (аутентификация и безотказность), а также то, что письмо не изменили в процессе передачи (целостность).

Отвечая на вопрос: «ЭЦП - что это такое?» - стоит отметить, что являются стандартным элементом большинства криптографических наборов протоколов и обычно используются для распространения ПО, совершения финансовых операций, а также во многих иных случаях, когда это важно для определения подделки или фальсификации.

Цифровые подписи зачастую применяются для реализации электронных подписей. Это более широкий термин, который относится к любым данным электронного типа. Вместе с тем не каждая электронная подпись является цифровой.

Цифровые подписи используют асимметричную криптографию. Во многих случаях они обеспечивают определенный уровень проверки и безопасности для сообщений, которые были отправлены по незащищенному каналу. Будучи правильно реализованной, цифровая подпись позволяет полагать, что сообщение было отправлено с помощью заявленного отправителя. Цифровые печати и подписи эквивалентны собственноручным подписям и реальным печатям.

ЭЦП - что это такое?

Цифровые подписи подобны традиционным собственноручным подписям во многих отношениях, при этом их труднее подделать, чем рукописные. Цифровые схемы подписи имеют криптографические основы и должны быть выполнены должным образом, чтобы не потерять эффективность. Как подписать документ ЭЦП? Нужно использовать 2 парных криптоключа.

ЭЦП могут также реализовать принцип безотказности. Это означает, что подписчик не может успешно утверждать, что он не подписывал сообщение. Кроме того, некоторые схемы предлагают временную метку для цифровой подписи и даже если закрытый ключ подвергается воздействию, подпись остается действительной. ЭЦП могут быть представлены в виде битовой строки и могут быть применены в электронной почте, контрактах или сообщении, отправленном с помощью какого-либо криптографического протокола.

Криптография с открытым ключом или структура ЭЦП

Что это такое? Цифровая схема подписи включает в себя одновременно три алгоритма.

Алгоритм генерации ключа, выбирающий секретный ключ равномерным и случайным образом из множества возможных частных. Он выдает ключ секретный и идущий с ним в паре открытый.

Алгоритм подписи, который, учитывая сообщение и закрытый ключ, собственно и производит подпись.

Проверочный алгоритм подписи, который учитывает сообщение, открытый ключ и подпись и принимает или же отклоняет отправку письма, определяя подлинность.

Как установить ЭЦП?

Для того чтобы использовать цифровую подпись, необходимо наделить ее двумя основными свойствами. Что же нужно учитывать перед тем, как подписать документ ЭЦП?

Во-первых, подлинность подписи, генерируемой из фиксированного сообщения и секретного ключа, может быть проверена с помощью соответствующей открытой информации.

Во-вторых, должно быть вычислительно неосуществимо подобрать правильную подпись не зная секретного ключа. ЭЦП представляет собой механизм аутентификации, который позволяет создателю сообщения прикрепить код, который действует в качестве подписи.

Применение цифровых подписей

Поскольку современные организации постепенно отходят от бумажных документов с подписями, выполненными чернилами, ЭЦП могут обеспечить дополнительное заверение подлинности и доказательство авторства, идентичности и статуса документа. Кроме того, цифровая подпись может быть средством, подтверждающим информированное согласие и одобрение подписавшей стороны. Таким образом, ЭЦП для физических лиц - реальность.

Аутентификация

Несмотря на то что письма могут включать в себя подробную информацию, не всегда можно достоверно определить отправителя. Цифровые подписи могут быть использованы для аутентификации источника сообщений. Когда секретный ключ ЭЦП привязан к конкретному пользователю, это подтверждает, что сообщение было отправлено именно им. Значение уверенности в том, что отправитель подлинный, особенно очевидна в финансовых сферах.

Целостность

Во многих сценариях отправитель и получатель письма нуждаются в точном подтверждении, что оно не было изменено при передаче. Хотя шифрование скрывает содержимое отправленного объекта, возможно лишь изменить зашифрованное сообщение, без понимания его смысла. Некоторые способны предотвратить это, но не во всех случаях. В любом случае проверка ЭЦП при расшифровке обнаружит нарушение целостности письма.

Однако если сообщение подписано цифровой подписью, любое изменение в нем после подписания дезавуирует подпись. Кроме того, не существует эффективного метода изменить сообщение и произвести новое с действительной подписью, потому что это считается вычислительно невозможным.

Неотрекаемость

Неотрекаемость или невозможность отрицания происхождения письма является важным аспектом в развитии ЭЦП. Что это такое? Это означает, что юридическое лицо, отправившее некоторую информацию, не может в дальнейшем отрицать, что подписало ее. Аналогичным образом доступ к открытому ключу не позволяет злоумышленникам подделывать действительную подпись. Такие же последствия несет и применение ЭЦП для физических лиц.

При этом следует акцентировать внимание на том, что все свойства подлинности, безотказности и т.д. зависят от секретного ключа, который не должен быть отозван до его использования. Открытые ключи также должны быть аннулированы в паре с секретными после использования. Проверка ЭЦП на предмет «отзыва» происходит по определенному запросу.

Ввод секретного ключа на смарт-карте

Все криптосистемы, функционирующие на принципах использования открытого/закрытого ключа, полностью зависят от содержания данных в секрете. Секретный ключ ЭЦП может храниться на компьютере пользователя и быть защищен локальным паролем. Однако такой способ имеет два недостатка:

  • пользователь может подписывать документы исключительно на данном конкретном компьютере;
  • безопасность секретного ключа полностью зависит от безопасности компьютера.

Более надежная альтернатива для хранения секретного ключа - смарт-карта. Многие смарт-карты оснащены защитой от несанкционированного вмешательства.

Как правило, пользователь должен активировать свою смарт-карту, введя персональный идентификационный номер или PIN-код (таким образом обеспечивая Это может быть устроено так, что закрытый ключ никогда не покидает смарт-карту, хотя это не всегда реализуется в криптопро ЭЦП.

Если смарт-карта украдена, злоумышленнику будет по-прежнему нужен PIN-код для создания цифровой подписи. Это несколько снижает безопасность данной схемы. Смягчающим фактором является то, что сгенерированные ключи, если они хранятся на смарт-картах, как правило, трудно скопировать, предполагается, что они существуют только в одном экземпляре. Таким образом, когда потеря смарт-карты будет обнаружена владельцем, соответствующий сертификат может быть немедленно отозван. Закрытые ключи, защищенные только программным обеспечением, проще скопировать, и такие утечки гораздо труднее обнаружить. Поэтому использование ЭЦП без дополнительной защиты небезопасно.

В импульсных устройствах очень часто можно встретить транзисторные ключи. Транзисторные ключи присутствуют в триггерах, коммутаторах, мультивибраторах, блокинг-генераторах и в других электронных схемах. В каждой схеме транзисторный ключ выполняет свою функцию, и в зависимости от режима работы транзистора, схема ключа в целом может меняться, однако основная принципиальная схема транзисторного ключа - следующая:

Есть несколько основных режимов работы транзисторного ключа: нормальный активный режим, режим насыщения, режим отсечки и активный инверсный режим. Хотя схема транзисторного ключа - это в принципе схема транзисторного усилителя с общим эмиттером, по функциям и режимам эта схема отличается от типичного усилительного каскада.

В ключевом применении транзистор служит быстродействующим ключом, и главными статическими состояниями являются два: транзистор закрыт и транзистор открыт. Запертое состояние - состояние разомкнутое, когда транзистор пребывает в режиме отсечки. Замкнутое состояние - состояние насыщения транзистора, или близкое к насыщению состояние, в этом состоянии транзистор открыт. Когда транзистор переключается из одного состояния в другое, это активный режим, при котором процессы в каскаде протекают нелинейно.


Статические состояния описываются в соответствии со статическими характеристиками транзистора. Характеристик две: семейство выходных - зависимость тока коллектора от напряжения коллектор-эмиттер и семейство входных - зависимость тока базы от напряжения база-эмиттер.

Для режима отсечки характерно смещение обеих p-n переходов транзистора в обратном направлении, причем бывает глубокая отсечка и неглубокая отсечка. Глубокая отсечка - это когда приложенное к переходам напряжение в 3-5 раз превышает пороговое и имеет полярность обратную рабочей. В таком состоянии транзистор разомкнут, и токи его электродов чрезвычайно малы.

При неглубокой же отсечке напряжение, приложенное к одному из электродов, ниже, и токи электродов больше чем при глубокой отсечке, в результате токи уже зависят от приложенного напряжения в соответствии с нижней кривой из семейства выходных характеристик, эту кривую так и называют «характеристика отсечки».

Для примера проведем упрощенный расчет для ключевого режима транзистора, который будет работать на резистивную нагрузку. Транзистор будет длительное время находиться лишь в одном из двух главных состояний: полностью открыт (насыщение) или полностью закрыт (отсечка).


Пусть нагрузкой транзистора будет обмотка реле SRD-12VDC-SL-C, сопротивление катушки которого при номинальных 12 В будет составлять 400 Ом. Пренебрежем индуктивным характером обмотки реле, пусть разработчики предусмотрят снаббер для защиты от выбросов в переходном режиме, мы же проведем расчет исходя из того, что реле включат один раз и очень надолго. Ток коллектора найдем по формуле:

Iк = (Uпит-Uкэнас) / Rн.

Где: Iк - постоянный ток коллектора; Uпит - напряжение питания (12 вольт); Uкэнас - напряжение насыщения биполярного транзистора (0,5 вольт); Rн - сопротивление нагрузки (400 Ом).

Получаем Iк = (12-0,5) / 400 = 0,02875 А = 28,7 мА.

Для верности возьмем транзистор с запасом по предельному току и по предельному напряжению. Подойдет BD139 в корпусе SOT-32. Этот транзистор обладает параметрами Iкмакс = 1,5 А, Uкэмакс = 80 В. Будет хороший запас.

Чтобы обеспечить ток коллектора в 28,7 мА, необходимо обеспечить соответствующий ток базы. Ток базы определяется формулой: Iб = Iк / h21э, где h21э – статический коэффициент передачи по току.

Современные мультиметры позволяют измерять этот параметр, и в нашем случае он составил 50. Значит Iб = 0,0287 / 50 = 574 мкА. Если значение коэффициента h21э неизвестно, можно для надежности взять минимальное из документации на данный транзистор.

Чтобы нужно определить необходимое значение резистора базы. Напряжение насыщения база-эмиттер составляет 1 вольт. Значит, если управление будет осуществляться сигналом с выхода логической микросхемы, напряжение которого 5 В, то для обеспечения требуемого тока базы в 574 мкА, при падении на переходе 1 В, получим:

R1 = (Uвх-Uбэнас) / Iб = (5-1) / 0,000574 = 6968 Ом

Выберем в меньшую сторону (чтобы тока точно хватило) из стандартного ряда резистор 6,8 кОм.

НО, чтобы транзистор переключался быстрее и чтобы срабатывание было надежным, будем применять дополнительный резистор R2 между базой и эмиттером, а на нем будет падать некоторая мощность, значит необходимо понизить сопротивление резистора R1. Примем R2 = 6,8 кОм и скорректируем значение R1:

R1 = (Uвх-Uбэнас) / (Iб+I(через резистор R2) = (Uвх-Uбэнас) / (Iб+Uбэнас/R2)

R1 = (5-1) / (0,000574+1/6800) = 5547 Ом.

Пусть будет R1 = 5,1 кОм, а R2 = 6,8 кОм.

Посчитаем потери на ключе: P = Iк * Uкэнас = 0,0287 * 0,5 = 0,014 Вт. Радиатор транзистору не потребуется.