Условие равновесия произвольной пространственной системы сил. Уравнения равновесия плоской и пространственной систем сил. Эффективный способ решения задачи

20. Условие равновесия пространственной системы сил:

21. Теорема о 3-х непараллельных силах: Линии действия трёх непараллельных взаимно уравновешивающихся сил, лежащих в одной плоскости, пересекаются в одной точке.

22. Статически определимые задачи – это задачи, которые можно решать методами статики твёрдого тела, т.е. задачи, в которых число неизвестных не превышает числа уравнений равновесия сил.

Статически не определимые – это системы, в которых число неизвестных величин превышает число независимых уравнений равновесия для данной системы сил

23. Уравнения равновесия плоской системы параллельных сил:

AB не параллельно F i

24. Конус и угол трения: Предельное положение активных сил, под действием которых может иметь место равенство, описывает конус трения c углом (φ).

Если активная сила проходит вне этого конуса, то тогда равновесие невозможно.

Угол φ называют углом трения.

25. Указать размерность коэффициентов трения: коэффициенты трения покоя и трения скольжения-безразмерные величины, коэффициенты трения качения и трения верчения имеют размерность длины(мм,см,м).м

26. Основные допущения, принимаемые при расчёте плоских статически опред.ферм: -стержни фермы считают невесомыми; -крепления стержней в узлах фермы-шарнирные; -внешняя нагрузка накладывается только в узлах фермы; -стержень попадает под связь.

27. Какая связь между стержнями и узлами статически определимой фермы?

S=2n-3 –простая статически определимая ферма, S-количество стержней, n-количество узлов,

если S<2n-3 –не жесткая ферма, равновесие возможно, если внешние силы будут одинаково соотноситься

S>2n-3 – статически не определимая ферма, имеет лишние связи, +расчёт деформации

28. Статически определимая ферма должна удовлетворять условию: S=2n-3; S-количество стержней, n-количество узлов.

29. Метод вырезания узлов: Этот метод состоит в том, что мысленно вырезают узлы фермы, прикладывают к ним соответствующие внешние силы и реакции стержней и составляют уравнения равновесия сил, приложенных к каждому узлу. Условно предполагают, что все стрежни растянуты(реакции стержней направлены от узлов).

30. Метод Риттера: Проводим секущую плоскость, рассекающую ферму на 2 части. Сечение должно начинаться и заканчиваться за пределами фермы. В качестве объекта равновесия можно выбирать любую часть. Сечение проходит по стержням, а не по узлам. Силы, приложенные к объекту равновесия, образуют произвольную систему сил, для которой можно составить 3 уравнения равновесия. Поэтому сечение проводим так, чтобы в него попало не более 3 стержней, усилия в которых неизвестны.



Особенностью метода Риттера является выбор формы уравнения таким образом, чтобы в каждое уравнение равновесия входила одна неизвестная величина. Для этого определяем положения точек Риттера, как точек пересечения линий действия двух неизвестных усилий и записываем уравнения моментов отн. этих точек.

Если точка Риттера лежит в бесконечности, то в качестве уравнения равновесия составляем уравнения проекций на ось, перпендикулярную этим стержням.

31. Точка Риттера- точка пересечения линий действия двух неизвестных усилий. Если точка Риттера лежит в бесконечности, то в качестве уравнения равновесия составляем уравнения проекций на ось, перпендикулярную этим стержням.

32. Центр тяжести объемной фигуры:

33. Центр тяжести плоской фигуры:

34. Центр тяжести стержневой конструкции:

35. Центр тяжести дуги:

36. Центр тяжести кругового сектора:

37. Центр тяжести конуса:

38. Центр тяжести полушара:

39. Метод отрицательных величин: Если твёрд.тело имеет полости, т.е. полости из которых вынута их масса, то мы мысленно заполняем эти полости до сплошного тела, и определяем центр тяжести фигуры, взяв вес, объём, площадь полостей со знаком «-».

40. 1-й инвариант: 1-м инвариантом системы сил называют главные вектор системы сил. Главный вектор системы сил не зависит от центра приведения R=∑ F i

41. 2-й инвариант: Скалярное произведение главного вектора на главный момент системы сил для любого центра приведения есть величина постоянная.

42. В каком случае система сил приводится к силовому винту? В случае, если главный вектор системы сил и её главный момент относительно центра приведения не равны нулю и не перпендикулярны между собой, задан. систему сил можно привести к силовому винту.

43. Уравнение центральной винтовой оси:

44. M x - yR z + zR y = pR x ,
M y - zR x + xR z = pR y ,
M z - xR y + yR x = pR z

45. Момент пары сил как вектор- этот вектор перпендикулярен плоскости действия пары и направлен в сторону, откуда видно вращение пары против хода часовой стрелки. По модулю векторный момент равен произведению одной из сил пары на плечо пары. Векторный момент пары явл. свободным вектором и может быть приложен к любой точке твердого тела.

46. Принцип освобождаемости от связей: Если связи отбрасываются, то их необходимо заменить силами реакций от связи.

47. Веревочный многоугольник- это построение графостатики, которым можно пользоваться для определения линия действия равнодействующей плоской системы сил для нахождения реакций опор.

48. Какая взаимосвязь между верёвочным и силовым многоугольником: Для нахождения неизвестных сил графически в силовом многоугольнике используем дополнительную точку О(полюс), в веревочном многоугольнике находим равнодействующую, перемещая которую в силовой многоугольник находим неизвестные силы

49. Условие равновесия систем пар сил: Для равновесия пар сил действующих на твердое тело необходимо и достаточно чтобы момент эквивалентных пар сил был равен нулю. Следствие: Чтобы уравновесить пару сил необходимо приложить уравновешивающую пару, т.е. пару сил можно уравновесить другой парой сил с равными модулями и противоположно направленными моментами.

Кинематика

1. Все способы задания движения точки:

естественный способ

координатный

радиус-векторный.

2. Как найти уравнение траектории движения точки при координатном способе задания её движения? Для того, чтобы получить уравнение траектории движение материальной точки, при координатном способе задания необходимо исключить параметр t из законов движения.

3. Ускорение точки при координ. способе задания движения:

над иксом 2 точки

над y 2 точки

4. Ускорение точки при векторном способе задания движения:

5. Ускорение точки при естественном способе задания движения:

= = * +v* ; a= + ; * ; v* .

6. Чему равно и как оно направлено нормальное ускорение – направлено по радиусу к центру,

ВЕРНУТЬСЯ Сложное движение точки (тела) – такое движение, при котором точка (тело) одновременно участвует в нескольких движениях (напр. пассажир, перемещающийся по движущемуся вагону). В этом случае вводится подвижная система координат (Oxyz), которая совершает заданное движение относительно неподвижной (основной) системы координат (O 1 x 1 y 1 z 1). Абсолютным движением точки назыв. движение по отношению к неподвижной системе координат. Относительное движение – движение по отношению к подвижной системе коорд. (движение по вагону). Переносное движение – движение подвижной сист. координат относительно неподвижной (движение вагона). Теорема о сложении скоростей : , ; -орты (единичные вектора) подвижной системы координат, орт вращается вокруг мгновенной оси, поэтому скорость его конца и т.д., Þ: , ; – относительная скорость. ; переносная скорость: , поэтому абсолютная скорость точки = геометрической сумме ее переносной (v e) и относительной (v r) скоростей , модуль: . :
и т.д. Слагаемые выражения, определяющего ускорения : 1) – ускорение полюса О; 2) 3) – относительное ускорение точки; 4) , получаем: . Первые три слагаемых представляют собой ускорение точки в переносном движении: – ускорение полюса О; – вращательное уск., – осестремительное уск., т.е. . Теорема о сложении ускорений (теорема Кориолиса) : , где – ускорение Кориолиса (кориолисово ускорение) – в случае непоступательного переносного движения абсолютное ускорение = геометрической сумме переносного, относительного и кориолисова ускорений. Кориолисово ускорение характеризует: 1) изменение модуля и направления переносной скорости точки из-за ее относительного движения; 2) изменение направления относительной скорости точки из-за вращательного переносного движения. Модуль ускорения Кориолиса: а с = 2×|w e ×v r |×sin(w e ^ v r), направление вектора определяется по правилу векторного произведения, или по правилу Жуковского: проекцию относительной скорости на плоскость, перпендикулярную переносной угловой скорости, надо повернуть на 90 о в направлении вращения. Кориолисово уск. = 0 в трех случаях: 1) w e =0, т.е. в случае поступательного переносного движения или в момент обращения угл. скорости в 0; 2) v r =0; 3) sin(w e ^ v r)=0, т.е. Ð(w e ^ v r)=0, когда относительная скорость v r параллельна оси переносного вращения. В случае движения в одной плоскости – угол между v r и вектором w e = 90 о, sin90 o =1, а с =2×w e ×v r . Сложное движение твердого тела При сложении двух поступательных движений результирующее движение также является поступательным и скорость результирующего движения равна сумме скоростей составляющих движений. Сложение вращений тв. тела вокруг пересекающихся осей. Ось вращения, положение которой в пространстве изменяется со временем назыв. мгновенной осью вращения тела . Вектор угловой скорости – скользящий вектор, направленный вдоль мгновенной оси вращения. Абсолютная угловая скорость тела = геометрической сумме скоростей составляющих вращений – правило параллелограмма угловых скоростей. . Если тело участвует одновременно в мгновенных вращениях вокруг нескольких осей, пересекающихся в одной точке, то . При сферическом движении твердого тела, одна из точек которого во все время движения остается неподвижной, имеем уравнения сферического движения: Y=f 1 (t); q=f 2 (t); j=f 3 (t). Y – угол прецессии, q – угол нутации, j – угол собственного вращения - углы Эйлера. Угловая скорость прецессии , угл. скорость нутации , угл. ск. собственного вращения . , – модуль угловой скорости тела вокруг мгновенной оси. Через проекции на неподвижные оси координат: – кинематические уравнения Эйлера. Сложение вращений вокруг 2-х параллельных осей . 1) Вращения направлены в одну сторону. w=w 2 +w 1 , С – мгновенный центр скоростей и через нее проходит мгновенная ось вращения, , . 2) Вращения направлены в разные стороны. , w=w 2 -w 1 С – мгн. центр ск. и мгн. ось вращения, . Векторы угловых скоростей при вращении вокруг ||-ых осей складываются так же, как векторы параллельных сил. 3) Пара вращений – вращения вокруг ||-ных осей направлены в разные стороны и угловые скорости по модулю равны ( – пара угловых скоростей). В этом случае v A =v B , результирующее движение тела – поступательное (или мгновенное поступательное) движение со скоростью v=w 1 ×AB – момент пары угловых скоростей (поступательное движение педали велосипеда относит-но рамы). Мгн. центр скоростей находится в бесконечности. Сложение поступательного и вращательного движений . 1) Скорость поступательного движения ^ к оси вращения – плоскопараллельное движение – мгновенное вращение вокруг оси Рр с угловой скоростью w=w". 2) Винтовое движение – движение тела слагается из вращательного движения вокруг оси Аа с угл.ск. w и поступательного со скоростью v||Аа. Ось Аа – ось винта. Если v и w в одну сторону, то винт – правый, если в разные – левый. Расстояние, проходимое за время одного оборота любой точкой тела, лежащей на оси винта, наз. шагом винта – h. Если v и w постоянны, то h= =const, при постоянном шаге любая (×)М, не лежащая на оси винта описывает винтовую линию. направлена по касательной к винтовой линии. 3) Скорость поступательного движения образует произвольный угол с осью вращения, в этом случае движение можно рассматривать как слагающееся из серии мгновенных винтовых движений, вокруг непрерывно изменяющихся винтовых осей – мгновенно–винтовое движение.

Если система сил находится в равновесии, то ее главный вектор и главный момент равны нулю:

Эти векторные равенства приводят к следующим шести скалярным равенствам:

которые называются условиями равновесия пространственной произвольной системы сил.

Первые три условия выражают равенство нулю главного вектора, следующие три - равенство нулю главного момента системы сил.

В этих условиях равновесия должны учитываться все действующие силы - как активные (задаваемые), так и реакции связей. Последние заранее неизвестны, и условия равновесия становятся уравнениями для определения этих неизвестных - уравнениями равновесия.

Поскольку максимальное число уравнений равно шести, то в задаче на равновесие тела под действием произвольной пространственной систе-мы сил можно определить шесть неизвестных реакций. При большем количестве неизвестных задача становится статически неопределенной.

И еще одно замечание. Если главный вектор и главный момент относительно некоторого центра О равны нулю, то они будут равны нулю относительно любого другого центра. Это прямо следует из материала о перемене центра приведения (доказать самостоятельно). Следовательно, если условия равновесия тела выполняются в одной системе координат, то они будут выполняться и в любой другой неподвижной системе координат. Иными словами, выбор координатных осей при составлении уравнений равновесия совершенно произволен.

Прямоугольная плита (рис. 51, а) весом удерживается в горизонтальном положении сферическим шарниром О, подшипником А и тросом BE, причем точки находятся на одной вертикали. В точке D к плите приложена сила , перпендикулярная стороне OD и наклоненная к плоскости плиты под углом 45°. Определить натяжение троса и реакции опор в точках Он А, если и .

Для решения задачи рассматриваем равновесие плиты. К активным силам Р, G добавляем реакции связей - составляющие реакции сферического шарнира, реакции , подшипника, реакцию троса. Одновременно вводим координатные оси Oxyz (рис. 51, б). Видно, что полученная совокупность сил образует произвольную пространственную систему, в которой силы неизвестны.

Для определения неизвестных составляем уравнения равновесия.

Начинаем с уравнения проекций сил на ось :

Поясним определение проекции вычисление осуществляется в два приема- вначале определяется проекция силы Т на плоскость , далее, проектируя на осъ х (удобнее на ось , параллельную ), находим (см. рис. 51,б):

Этим способом двойного проектирования удобно пользоваться, когда линия действия силы и ось не пересекаются. Далее составляем:

Уравнение моментов сил относительно оси имеет вид:

Моменты сил в уравнении отсутствуют, так как эти силы либо пересекают ось х(), либо ей параллельны . В обоих этих случаях момент силы относительно оси равен нулю (см. с. 41).

Вычисление момента силы часто облегчается, если силу разложить подходящим образом на составляющие и воспользоваться теоремой Вариньона. В данном случае это удобно сделать для силы . Разлагая ее на горизонтальную и вертикальную составляющие, можем написать.

Случаю такого равновесия сил соответствуют два условия равновесия

М= Мо = 0, R* = 0.

Модули главного момента Мо и главного вектора R* рассматриваемой системы определяются по формулам

Mo= (M x 2 + M y 2 + +M z 2) 1/2 ; R*= (X 2 + Y 2 +Z 2) 1/2 .

Они раны нулю только при следующих условиях:

M x = 0, M y =0, M z = 0, X=0, Y=0, Z=0,

которым соответствуют шесть основных уравнений равновесия сил, произвольно расположенных в пространстве

=0; =0;

=0; (5-17)

=0 ; =0.

Три уравнения системы (5-17) слева называются уравнениями моментов сил относительно осей координат, а три справа- уравнениями проекций сил на оси.

При помощи этих формул уравнение моментов можно представить в виде

å (y i Z i - z i Y i)=0; å(z i Х i - x i Z i)=0 ; å(x i Y i - y i X i)=0 . (5-18)

где x i , y i , z i - координаты точек приложения силы Р; Y i , Z i , X i - проекции этой силы на оси координат, могущие иметь любые направления.

Существуют и другие системы шести уравнений равновесия сил, произвольно расположенных в пространстве.

Приведение системы сил к равнодействующей силе.

Если главный вектор системы сил R* не равен нулю, а главный момент Мо или равен нулю, или направлен перпендикулярно к главному вектору, то заданная система сил приводится к равнодействующей силе.

Возможны 2 случая.

1-й случай.

Пусть R*¹ 0; Mo = 0 . В этом случае силы приводят к равнодействующей, линия действия которой проходит через центр приведения О, а сила R* заменяет собой заданную систему сил, т.е. является ее равнодействующей.

2-й случай.

R*¹ 0; Mo¹ 0 и Мо R*. (рис.5.15).

После приведения системы сил к центру О получена сила R* , приложенная в этом центре и равная главному вектору сил, и пара сил, момент которой М равен главному моменту Мо всех сил относительно центра приведения, причем Мо R*.

Выберем силы этой пары R’ и R равными по модулю главному вектору R* , т.е. R= R’ = R*. Тогда плечо этой пары следует взять равным ОК= = М О /R* .Проведем через точку О плоскость I, перпендикулярную к моменту пары сил М . Пара сил R’ , R должна находиться в этой плоскости. Расположим эту пару так, чтобы одна из сил пары R’ была приложена в точке О и направлена противоположно силе R* . Восставим в плоскости I в точке О перпендикуляр к линии действия силы R* , и в точке К на расстоянии ОК= М О /R* от точки О приложим вторую силу пары R .

Отрезок ОК откладываем в такую сторону от точки О, чтобы, смотря навстречу вектору момента М, видеть пару стремящуюся вращать свою плоскость против движения часовой стрелки. Тогда силы R* и R’ , приложенные в точке О, уравновесятся, а сила R пары, приложенная в точке К, заменит собой заданную систему сил, т.е. будет ее равнодействующей. Прямая, совпадающая с линией действия этой силы, является линией действия равнодействующей силы. Рис. 5.15 показывает различие между равнодействующей силой R и силой R* , полученной при приведении сил к центру О.

Равнодействующая R системы сил, приложенная в точке К, имеющая определенную линию действия, эквивалентна заданной системе сил, т.е. заменяет собой эту систему.

Сила же R* в точке О заменяет заданную систему сил только в совокупности с парой сил с моментом М= Мо .

Силу R* можно приложить в любой точке тела, к которой приведены силы. От положения точки зависит только модуль и направление главного момента Мо .

Теорема Вариньона. Момент равнодействующей относительно любой точки равен геометрической сумме моментов составляющих сил относительно этой точки, а момент равнодействующей силы относительно любой оси равен алгебраической сумме моментов, составляющих сил относительно этой оси.

Необходимые и достаточные условия равновесия любой системы сил выражаются равенствами (см. § 13). Но векторы R и равны только тогда, когда т. е. когда действующие силы, согласно формулам (49) и (50), будут удовлетворять условиям:

Таким образом, для равновесия произвольной пространственной системы сил необходимо и достаточно, чтобы суммы проекций всех сил на каждую из трех координатных осей и суммы их моментов относительно этих осей были равны нулю.

Равенства (51) выражают одновременно условия равновесия твердого тела, находящегося под действием любой пространственной системы сил.

Если на тело кроме сил действует еще пара, заданная ее моментом , то при этом вид первых трех из условий (51) не изменится (сумма проекций сил пары на любую ось равна нулю), а последние три условия примут вид:

Случай параллельных сил. В случае, когда все действующие на тело силы параллельны друг другу, можно выбрать координатные оси так, что ось будет параллельна силам (рис. 96). Тогда проекции каждой из сил на оси и их моменты относительно оси z будут равны нулю и система (51) даст три условия равновесия:

Остальные равенства обратятся при этом в тождества вида

Следовательно, для равновесия пространственной системы параллельных сил необходимо и достаточно, чтобы сумма проекций всех сил на ось, параллельную силам, и суммы их моментов относительно двух других координатных осей были равны нулю.

Решение задач. Порядок решения задач здесь остается тем же, что и в случае плоской систсмьгсил. Установив, равновесие какого тела (объекта) рассматривается, надо изобразить все действующие на него внешние силы (и заданные, и реакции связей) и составить условия равновесия этих сил. Из полученных уравнений и определяются искомые величины.

Для получения более простых систем уравнений рекомендуется оси проводить так, чтобы они пересекали больше неизвестных сил или были им перпендикулярны (если это только излишне не усложняет вычисления проекций и моментов других сил).

Новым элементом в составлении уравнений является вычисление моментов сил относительно координатных осей.

В случаях, когда из общего чертежа трудно усмотреть, чему равен момент данной силы относительно какой-нибудь оси, рекомендуется изобразить на вспомогательном чертеже проекцию рассматриваемого тела (вместе с силой) на плоскость, перпендикулярную этой оси.

В тех случаях, когда при вычислении момента возникают затруднения в определении проекции силы на соответствующую плоскость или плеча этой проекции, рекомендуется разложить силу на две взаимно перпендикулярные составляющие (из которых одна параллельна какой-нибудь координатной оси), а затем воспользоваться теоремой Вариньона (см. задачу 36). Кроме того, можно вычислять моменты аналитически по формулам (47), как, например, в задаче 37.

Задача 39. На прямоугольной плите со сторонами а и b лежит груз. Центр тяжести плиты вместе с грузом находится в точке D с координатами (рис, 97). Один из рабочих удерживает плиту за угол А. В каких точках В я Е должны поддерживать плиту двое других рабочих, чтобы силы, прикладываемые каждым из удерживающих плиту, были одинаковы.

Решение. Рассматриваем равновесие плиты, которая является свободным телом, находящимся в равновесии под действием четырех параллельных сил где Р - сила тяжести. Составляем для этих сил условия равновесия (53), считая плиту горизонтальной и проводя оси так, как показано на рис. 97. Получим:

По условиям задачи должно быть Тогда из последнего уравнения Подставляя это значение Р в первые два уравнения, найдем окончательно

Решение возможно, когда При а при будет Когда точка D в центре плиты,

Задача 40. На горизонтальный вал, лежащий в подшипниках А и В (рис. 98) насажены перпендикулярно оси вала шкив радиусом см и барабан радиусом . Вал приводится во вращение ремнем, накинутым на шкив; при этом равномерно поднимается груз весом , привязанный к веревке, которая наматывается на барабан. Пренебрегая весом вала, барабана и шкива, определить реакции подшипников А и В и натяжение ведущей ветви ремня, если известно, что оно вдвое больше иатяжения ведомой ветви. Дано: см, см,

Решение. В рассматриваемой задаче при равномерном вращении вала действующие на него силы удовлетворяют условиям равновесия (51) (это будет доказано в § 136). Проведем координатные оси (рис. 98) и изобразим действующие на вал силы: натяжение F веревки, по модулю равное Р, натяжения ремня и составляющие реакций подшиппиков.

Для составления условий равновесия (51) вычисляем предварительно и вносим в таблицу значения проекций всех сил на координатные оси и их моментов относительно этих осей.

Теперь составляем условия равновесия (51); так как получим:

Из уравнений (III) и (IV) находим сразу, учитывая, что

Подставляя найденные значения в остальные уравнения, найдем;

И окончательно

Задача 41. Прямоугольная крышка весом , образующая с вертикалью угол закреплена на горизонтальной оси АВ в точке В цилиндрическим подшипником, а в точке А - подшипником с упором (рис. 99). Крышка удерживается в равновесии веревкой DE и оттягивается перекинутой через блок О иитью с грузом весом на конце (линия КО параллельна АВ). Дано: Определить натяжение веревки DE и реакции подшипников А и В.

Решение. Рассмотрим равновесие крышки. Проведем координатные оси, беря начало в точке В (при этом сила Т пересечет оси что упростит вид уравнений моментов).

Затем изобразим все действующие на крышку заданные силы и реакции связей: силу тяжести Р, приложенную в центре тяжести С крышки, силу Q, равную по модулю Q, реакцию Т веревки и реакции подшипников А и В (рис. 99; показанный пунктиром вектор М к данной задаче не относится). Для составления условий равновесия введем угол и обозначим Подсчет моментов некоторых сил пояснен на вспомогательных рис. 100, а, б.

На рис. 100, а показан вид в проекции на плоскость с положительного конца оси

Этот чертеж помогает вычислять моменты сил Р и Т относительно оси Из него видно, что проекции этих сил на плоскость (плоскость, перпендикулярную ) равны самим силам, а плечо силы Р относительно точки В равно ; плечо же силы Т относительно этой точки равно

На рис. 100, б показан вид в проекции на плоскость с положительного конца оси у.

Этот чертеж (вместе с рис. 100, а) помогает вычислять моменты сил Р и относительно оси у. Из него видно, что проекции этих сил на плоскость равны самим силам, а плечо силы Р относительно точки В равно плечо же силы Q относительно этой точки равно или , что видно из рис. 100, а.

Составляя с учетом сделанных пояснений условия равновесия (51) и полагая одновременно получим:

(I)

Учитывая, что найдем из уравнений (I), (IV), (V), (VI):

Подставляя эти значения в уравнения (II) и (III), получим:

Окончательно,

Задача 42. Решить задачу 41 для случая, когда на крышку дополнительно действует расположенная в ее плоскости пара с моментом поворот пары направлен (если смотреть на крышку сверху) против хода часовой стрелки.

Решение. В дополнение к действующим на крышку силам (см. рис. 99) изображаем момент М пары в виде вектора, перпендикулярного к крышке и приложенного в любой точке, например в точке А. Его проекции на координатные оси: . Тогда, составляя условия равновесия (52), найдем, что уравнения (I) - (IV) останутся такими же, как в предыдущей задаче, а последние два уравнения имеют вид:

Заметим, что этот же результат можно получить, не составляя уравнения в виде (52), а изобразив пару двумя силами, направленными, например, вдоль линий АВ и КО (при этом модули сил будут равны ), и пользуясь затем обычными условиями равновесия.

Решая уравнения (I) - (IV), (V), (VI), найдем результаты, аналогичные полученным в задаче 41, с той лишь разницей, что во все формулы вместо величины войдет . Окончательно получим:

Задача 43. Горизонтальный стержень АВ прикреплен к стене сферическим шарниром А и удерживается в положении, перпендикулярном стене, растяжками КЕ и CD, показанными на рис. 101, а. К концу В стержня подвешен груз весом . Определить реакцию шарнира А и натяжения растяжек, если Весом стержня пренебречь.

Решение. Рассмотрим равновесие стержня. На пего действуют сила Р и реакции Проведем координатные оси и составим условия равновесия (51). Для нахождения проекций и моментов силы разложим ее на составляющие . Тогда по теореме Вариньона , так как так как

Вычисление моментов сил относительно оси пояснено вспомогательным чертежом (рис. 101, б), на котором дан вид в проекции на плоскость