Теорема о непрерывности функции имеющей производную. Дифференцируемость функции. Дифференциал функции Непрерывность дифференцируемой функции Понятие дифференциала функции Геометрический смысл дифференциала. Производная произведения функций

Задача о скорости движущейся точки

Пусть – закон прямолинейного движения материальной точки. Обозначим через путь, пройденный точкой за время , а через путь, пройденный за время . Тогда за время точка пройдет путь , равный: . Отношение называется средней скоростью точки за время от до . Чем меньше , т.е. чем короче промежуток времени от до , тем лучше средняя скорость характеризует движение точки в момент времени . Поэтому естественно ввести понятие скорости в данный момент , определив ее как предел средней скорости за промежуток от до , когда :

Величина называется мгновенной скоростью точки в данный момент .

Задача о касательной к данной кривой

Пусть на плоскости задана непрерывная кривая уравнением . Требуется провести невертикальную касательную к данной кривой в точке . Так как точка касания дана, то для решения задачи требуется найти угловой коэффициент касательной. Из геометрии известно, что , где – угол наклона касательной к положительному направлению оси (см. рис.). Через точки и проведем секущую , где – угол, образованный секущей с положительным направлением оси . Из рисунка видно, что , где . Угловой коэффициент касательной к данной кривой в точке может быть найден на основании следующего определения.

Касательной к кривой в точке называется предельное положение секущей , когда точка стремится к точке . Отсюда следует, что .

Определение производной

Математическая операция, требуемая для решения рассмотренных выше задач, одна и та же. Выясним аналитическую сущность этой операции, отвлекаясь от вызвавших ее конкретных вопросов.



Пусть функция определена на некотором промежутке. Возьмем значение из этого промежутка. Придадим какое-нибудь приращение (положительное или отрицательное). Этому новому значению аргумента соответствует и новое значение функции , где .

Составим отношение , оно является функцией от .

Производной функции по переменной в точке называется предел отношения приращения функции в этой точке к вызвавшему его приращению аргумента , когда произвольным образом:

Замечание. Считается, что производная функции в точке существует, если предел в правой части формулы существует и конечен и не зависит от того, как приращение переменной стремится к 0 (слева или справа).

Процесс нахождения производной функции называется ее дифференцированием.

Нахождение производных некоторых функций по определению

а) Производная постоянной.

Пусть , где – постоянная, т.к. значения этой функции при всех одинаковы, то ее приращение равно нулю и, следовательно,

.

Итак, производная постоянной равна нулю, т.е. .

б) Производная функции .

Составим приращение функции:

.

При нахождении производной использовали свойство предела произведения функций, первый замечательный предел и непрерывность функции .

Таким образом, .

Связь между дифференцируемостью функции и ее непрерывностью

Функция, имеющая производную в точке , называется дифференцируемой в этой точке. Функция, имеющая производную во всех точках некоторого промежутка, называется дифференцируемой на этом промежутке.

Теорема. Если функция дифференцируема в точке , то она непрерывна в этой точке.

Доказательство. Придадим аргументу произвольное приращение . Тогда функция получит приращение . Запишем равенство и перейдем к пределу в левой и правой частях при :

Поскольку у непрерывной функции бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции, то теорему можно считать доказанной.

Замечание. Обратное утверждение не имеет места, т.е. из непрерывности функции в точке, вообще говоря, не следует дифференцируемость в этой точке. Например, функция непрерывна при всех , но она не дифференцируема в точке . Действительно:

Предел бесконечен, значит, функция не дифференцируема в точке .

Таблица производных элементарных функций

Замечание. Напомним свойства степеней и корней, используемые при дифференцировании функций:

Приведем примеры нахождения производных.

1) .

2)

Производная сложной функции

Пусть . Тогда функция будет сложной функцией от x .

Если функция дифференцируема в точке x , а функция дифференцируема в точке u , то тоже дифференцируема в точке x , причем

.

1.

Полагаем , тогда . Следовательно

При достаточном навыке промежуточную переменную u не пишут, вводя ее лишь мысленно.

2.

Дифференциал

К графику непрерывной функции в точке проведем касательную MT , обозначив через j ее угол наклона к положительному направлению оси Ох. Так как , то из треугольника MEF следует, что

Введем обозначение

.

Это выражение называется дифференциалом функции . Итак

Замечая, что , т.е. что дифференциал независимой переменной равен ее приращению, получим

Таким образом, дифференциал функции равен произведению ее производной на дифференциал (или приращение) независимой переменной.

Из последней формулы следует, что , т.е. производная функции равна отношению дифференциала этой функции к дифференциалу аргумента.

Дифференциал функции dy геометрически представляет собой приращение ординаты касательной, соответствующее приращению аргумента Dх .

Из рисунка видно, что при достаточно малом Dх по абсолютной величине можно взять приращение функции приближенно равным ее дифференциалу, т.е.

.

Рассмотрим сложную функцию , где , причем дифференцируема по u , а – по х . По правилу дифференцирования сложной функции

Умножим это равенство на dx :

Так как (по определению дифференциала), то

Таким образом, дифференциал сложной функции имеет тот же вид, если бы переменная u была не промежуточным аргументом, а независимой переменной.

Это свойство дифференциала называется инвариантностью (неизменяемостью) формы дифференциала .

Пример. .

Все правила дифференцирования можно записать для дифференциалов.

Пусть – дифференцируемы в точке х . Тогда

Докажем второе правило.

Производная неявной функции

Пусть дано уравнение вида , связывающее переменные и . Если нельзя явно выразить через , (разрешить относительно ) то такая функция называется неявно заданной . Чтобы найти производную от такой функции, нужно обе части уравнения продифференцировать по , считая функцией от . Из полученного нового уравнения найти .

Пример. .

Дифференцируем обе части уравнения по , помня, что есть функция от

Лекция 4. Производная и дифференциал функции одной переменной

Если функция y = f (x ) дифференцируема в некоторой точке x = x 0, то она в этой точке непрерывна.

Таким образом, в точках разрыва функция не может иметь производной. Обратное заключение неверно, т.е. из того, что в какой-нибудь точке x = x 0 функция y = f (x ) непрерывна не следует, что она в этой точке дифференцируема. Например, функция y = |x | непрерывна для всех x (–< х < ), но в точке x = 0 не имеет производной. В этой точке не существует касательной к графику. Есть правая касательная и левая, но они не совпадают.

21 Правила нахожд. производ. суммы

Правило 1. Если функции у = f(х) и у = g(х) имеют, производную в точке х, то и их сумма имеет производную в точке х, причем производная суммы равна сумме производных:
(f(х) + 8(х))" =f (х)+ (х).
На практике это правило формулируют короче: производная суммы равна сумме производных.
Например,
Правило 2. Если функция у = f(х) имеет, производную в точке х, то и функция у = кf(х) имеет производную в точке х, причем:

На практике это правило формулируют короче: постоянный множитель можно вынести за знак производной. Например,

Правило 3. Если функции у=f(х) и у =g(х) имеют производную в точке х, то и их произведение имеет производную в точке х, причем:

На практике это правило формулируют так: производная произведения двух функций равна сумме двух слагаемых. Первое слагаемое есть произведение производной первой функции на вторую функцию, а второе слагаемое есть произведение первой функции на производную второй функции.
Например:
Правило 4. Если функции у = f(x) и у=g(х) имеют производную в то и частное имеет производную в точке х, причем:

Таблица сложных производных


22 Диффир. функц. в точке

Функция y =f (x ) называется дифференцируемой в точке x 0, если ее приращение Δy (x 0,Δx ) может быть представлено в виде

Δy (x 0,Δx )=A Δx +o x ).

Главная линейная часть A Δx приращения Δy называется дифференциалом этой функции в точке x 0, соответствующим приращению Δx , и обозначается символом dy (x 0,Δx ).

Для того, чтобы функция y =f (x ) была дифференцируема в точке x 0, необходимо и достаточно, чтобы существовала производная f ′(x 0), при этом справедливо равенство A =f ′(x 0).

Выражение для дифференциала имеет вид

dy (x 0,dx )=f ′(x 0)dx ,

где dx x .

23 Производ. Слож. Функц

Производная сложной функции. Производная функции, заданной параметрически

Пусть y – сложная функция x , т.е. y = f (u ), u = g (x ), или

Если g (x ) и f (u ) – дифференцируемые функции своих аргументов соответственно в точках x и u = g (x ), то сложная функция также дифференцируема в точке x и находится по формуле

Производная функции заданной параметрически.

24 Произв и диффер. Высш.порядк

Пусть теперь производная -го порядка определена в некоторой окрестности точки и дифференцируема. Тогда

Если функция имеет в некоторой области D частную производную по одной из переменных, то названная производная, сама являясь функцией от может иметь в некоторой точке частные производные по той же или по любой другой переменной. Для исходной функции эти производные будут частными производными второго порядка (или вторыми частными производными).

Частная производная второго или более высокого порядка, взятая по различным переменным, называется смешанной частной производной. Например,

Дифференциалом порядка n , где n > 1 , от функции в некоторой точке называется дифференциал в этой точке от дифференциала порядка (n - 1) , то есть

Для функции, зависящей от одной переменной второй и третий дифференциалы выглядят так:

Отсюда можно вывести общий вид дифференциала n -го порядка от функции :

25 Теоремы Ферма, Ролля, Лангража

v Теорема Ферма: Пусть функция определена на и достигает своего наибольшего и наименьшего значения (M и m ) в некоторой из . Если существует производная в , то она обязательно равна 0.

Доказательство: Существует . Возможны два случая:

1) , => , => .

2) , => , => .

Из 1) и 2) следует, что

v Теорема Ролля (о корнях производной): Пусть функция непрерывна на и дифференцируема на и на концах отрезка принимает одинаковые значения: . Тогда существует хотя бы одна точка из , производная в которой .

v Доказательство: Непрерывная достигает на M и m . Тогда возможны два случая:

2) наибольшее значение достигается внутри интервала по теореме Ферма.

v Теорема Лангража (о конечных приращениях): Пусть функция непрерывна на и дифференцируема на . Тогда существует хотя бы одна из , для которой выполняется следующее равенство: .

Доказательство: Введем функцию . (непрерывная на и дифференцируемая на ).

Функция удовлетворяет Теореме Ролля существует , для которой: , , , .

· функция называется стро́го возраста́ющей на , если

· функция называется убыва́ющей на , если

· функция называется стро́го убыва́ющей на , если

Определение: Производной от функции в точкеназывается предел, к которому стремится отношение ее приращенияв этой точке к соответствующему приращениюаргумента, когда последнее стремится к нулю:

Т.е., если определена в, то

Теорема 1:

График функции имеет невертикальную касательную тогда и только тогда, когда существует конечное значение производной этой функции в данной точке.

Доказательство:

Пусть существует значение f’()-конечное, тогда

Пусть существует невертикальная касательная => существует - конечный.

Секущая стремится к касательной.

Теорема доказана.

Билет 2 Непрерывность функции, имеющей производную.

Функция f (x), определенная в некоторой окрестности точки a, называется непрерывной в этой точке, если

Теорема: (необходимое условие существования производной)

Если функция имеет конечнуюв точке, тонепрерывна в точке.

Доказательство:

Следовательно - непрерывна в точке.

Теорема доказана.

Замечание : обратное утверждение неверно, если функция непрерывна в точке, то отсюда не следует, что она имеет производную в этой точке.

Утверждение : если функция имеет в точке правую и левую производную, то она непрерывна и справа и слева.

Билет 3

Производная суммы, произведения, частного.

Производная обратной функции.

Определение дифференцируемой функции. Необходимое и достаточное условие дифференцируемости.

Пусть функция имеет производную в точке(конечную):.

Тогда для достаточно малыхможно записать в виде суммыи некоторой функции, которую мы обозначим через, которая стремится к нулю вместе с:,

и приращение в точке может быть записано в виде:

или (1) ,

ведь выражение понимается как функция оттакая, что ее отношение кстремится к нулю вместе с.

Пояснение:

Определение .

Функция называется дифференцируемой в точке, если ее приращение можно представить в виде:(2),

где А не зависит от , но вообще зависит от.

Теорема 1:

Для того, чтобы функция была дифференцируемой в точке, необходимо и достаточно, чтобы она имела конечную производную в этой точке.

Доказательство:

Достаточность условия доказана выше: из существования конечной производной следовала возможность представленияв виде (1), где можно положить.

Необходимость условия . Пусть функция дифференцируема в точке. Тогда из (2), предполагая, получаем.

Предел правой части при существует и равен А:.

Это означает, что существует производная . Теорема доказана.

Билет 6 Дифференциал функции, его геометрический смысл.

Если функция f имеет производную f΄(x o ) в точке x o , то существует предел , где Δf=f(x o + Δx)-f(x o ) ,,или, гдеA=f΄(x o ) .

Определение:

Функция f дифференциируема в точке x o , если ее приращение представимо в виде:

Где A Δx=df . (*)

Дифференциал - это главная линейная часть приращения функции.

Если существует конечная производная f΄(x o ) в точке x o , то функция f(x) дифференцируема в этой точке.

Верно и обратное: если функция f дифференцируема в точке x o , т.е. ее приращение представимо в виде (*), то она имеет производную в точке x o , равную A :

Геометрический смысл дифференциала:

A и B – точки графика f(x) , соответствующие значениям x o и (x o + Δx) независимой переменной. Ординаты точек A и B соответственно равны f(x o ) и f(x o + Δx) . Приращение функции Δf=f(x o + Δx)-f(x o ) в точке x o равно длине отрезка BD и представимо в виде суммы Δf=BD=DC+CB , где DC=tgα Δx=f΄(x o ) Δx и α есть угол между касательной в точке A к графику и положительным направлением оси x . Отсюда видно, что DC есть дифференциал функции f в точке x o :

DC=df=f΄(x o ) Δx .

При этом на долю второго члена CB приращения Δf приходится величина . Эта величина, при больших Δx , может быть даже больше, чем главный член, но она есть бесконечно малая более высокого порядка, чем Δx , когда Δx→0 .

Теорема: Если функция y = f (x ) дифференцируема в некоторой точке x = x 0, то она в этой точке непрерывна.

Таким образом, в точках разрыва функция не может иметь производной. Обратное заключение неверно, т.е. из того, что в какой-нибудь точке x = x 0 функция y = f (x ) непрерывна не следует, что она в этой точке дифференцируема. Например, функция y = |x | непрерывна для всех x (–Ґ< х < Ґ), но в точке x = 0 не имеет производной. В этой точке не существует касательной к графику. Есть правая касательная и левая, но они не совпадают.

Производная сложной функции

Теорема: Пусть функция , определенная и непрерывная в окрестности , имеет производную в точке . Функция определена и непрерывна в окрестности , где , и имеет производную в точке . Тогда сложная функция имеет производную в точке и

.

где и - б.м.ф. Тогда

и , где б.м.ф. в точке .

28. Производная суммы, произведения и частного двух функций.

Производная суммы (разности) функций

Производная алгебраической суммы функций выражается следующей теоремой.

Производная суммы (разности) двух дифференцируемых функций равна сумме (разности) производных этих функций:

Производная конечной алгебраической суммы дифференцируемых функций равна такой же алгебраической сумме производных слагаемых. Например,

Производная произведения функций.

Пусть u(x) и u(x) - дифференцируемые функции. Тогда произведение функций u(x)v(x) также дифференцируемо и

Производная произведения двух функций не равана произведению производных этих функций.

Производная частного функций.

Пусть u(x) и u(x) - дифференцируемые функции. Тогда, если v(x) ≠ 0 , то производная частного этих функций вычисляется по формуле

29. Производная обратной функции. Производная функции, заданной параметрически.

ТЕОРЕМА (производная обратной функции)

Пусть непрерывная, строго монотонная (возрастающая или убывающая) функция на отрезке и имеющая в точке производную . Тогда обратная функция имеет производную в точке и

.

ДОК.

= .

Теорема. (производная функции, заданной параметрически) Пусть функция x = φ(t) имеет обратную функцию t = Ф(x). Если функцииx=φ(t) , y = ψ(t) дифференцируемы и φ"(t) 0 , тогда

Доказательство

Так как функция x = φ(t) имеет обратную функцию, то формально y можно выразить черезx : y = ψ(Ф (x)) . Так как функция x = φ(t) дифференцируема, то, по теореме 5 , функция t = Ф(x) также дифференцируема.

Используя правила дифференцирования, получаем чтд

Аналогичную формулу можно получить и для второй производной y"" x :

Окончательно получаем

30. Производные высших порядков. Формула Лейбница.

Если f определена на интервале (a,b)®R, диф-ма в " точке xÎ(a,b) то на (a,b) возникает новая функция f:(a,b)®R, значение которой в точке x=f(x). Функция f сама может иметь производную (f): на (a,b)®R она по отношению к исходной функции называется второй производной от f и обозначается f(x), d 2 f(x)/dx 2 или f xx (x), f x 2 (x); Опр . Если определена производная f (n -1) (x) порядка n-1 от f то производная порядка n определяется формулой f (n) (x)=(f n -1))’(x). Для нее принято обозначение f (n) (x)=d n f(x)/dx n – ф-ла Лейбница , f (0) (x):=f(x).

31. Понятие дифференцируемости функции и первого дифференциала. Необходимое и достаточное условие дифференцируемости.

1.Дифференциалом функции y = f(x) называется главная линейная относительно D x часть приращения D y, равная произведению производной на приращение независимой переменной

dy = f" (x )D x.

Заметим, что дифференциал независимой переменной равен приращению этой переменной dx = D x. Поэтому формулу для дифференциала принято записывать в следующем виде:

dy = f" (x )dx.

2. Дифференцируемость. Функция называется дифференцируемой в точке x, если ее приращение ∆y в этой точке может быть представлено в виде: ∆y=A∆x + α(∆x) ∆x, где A не зависит от ∆x, α и α(∆x) – бесконечно малая функция относительно ∆x при ∆x→0.

32. Геометрический смысл производной и дифференциала. Касательная и нормаль к графику.

Пусть f определена на (a,b) и непрерывна в точке x 0 Î(a,b), пусть y 0 =f(x 0), M 0 (x 0 ,y 0); x 0 +DxÎ(a,b), Dy=f(x 0 +Dx)-f(x 0), M(x 0 +Dx, y 0 +Dy). M 0 M: y=k(x-x 0)+y 0 (1),

1 )Если $ кон. предел lim D x ® 0 k(Dx)=k 0 то прямая y=k 0 (x-x 0)+y 0 (2) назыв.

(наклонной) касательной к графику f в точке (x 0 ,y 0);

2 ) Если $ бесконечный предел

lim D x ® 0 k(Dx)=¥, то прямая x=x 0 – вертикальная касательная к графику в точке (х 0 ,у 0);

При х=х 0 (2) – предельное положение (1) т.о. предельное положение секущей М 0 М

Dх®0 это касательная y=f(x) в точке х 0 , т.к. lim D x ® 0 k(Dx)=lim D x ® 0 Dy/Dx=f(x 0) то уравнение

касательной имеет вид y=f(x 0)(x-x 0)+ y 0 , где y 0 =f(x 0) (3). Из 3 получаем что производная в точке х 0 =tga, a - угол между касательной и осью Ох, первое слагаемое f(x 0)(x-x 0)=f(x 0)Dx, Dx=x-x 0 является диф-ом dy в точке х 0 Þ y-y 0 =dy т.о. дифференциал функции равен приращению ординаты касательной в соответствующей точке графика.

3 )Если lim D x ® 0 Dy/Dx=¥, то касательной является прямая х=х 0 при этом в точке х 0 бескон. производная может существовать или не существовать.

33. Инвариантность формы первого дифференциала. Дифференциалы высших порядков, неинвариантность их формы в общем случае .

Дифференциалы высших порядков . Диф-ал от диф-ла первого порядка dy=f’(x)dx функции y=f(x) (рассматриваемого только как ф-и переменной х т.е. приращение аргумента х (dx) принимается постоянным, при условии что повторное приращ-е переменной х совпадает с начальным) называется вторым диф-ом d 2 f(x):d(df(x))=d(f’(x)dx)=d(f’(x))dx=f”(x)dxdx=f”(x)dx 2 отсюда f”(x)=d 2 f(x)/dx 2 ; Опр . Диф-ом n-го порядка n=1,2… называется дифференциалом от дифференциала порядка n-1 при условии что в диф-ле берутся одни и те же приращения dx, независимого от х. d n f(x)=d(d n -1 f(x)) не трудно видеть, что d n f(x)=f (n) (x)dx n (dx n =(dx) n) Þ f (n) (x)=d n f(x)/dx n .

Неинвариантность формы дифференциала порядка выше первого

Рассмотрим случай, когда х является не независимой переменной, а функцией от другой переменной

Теперь в правой части формулы (3) от переменной u зависит не только функция f (x ), но и дифференциал dx . Следовательно

Сравнивая формулы (2) и (4), убеждаемся, что дифференциалы второго (и более высоких порядков) не обладают инвариантностью формы.

34. Экстремумы функции. Необходимые условия экстремума (теорема Ферма).

Точки экстремума

Экстре́мум - максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума . Соответственно, если достигается минимум - точка экстремума называется точкой минимума , а если максимум - точкой максимума . В математическом анализе выделяют также понятие локальный экстремум (соответственно минимум или максимум) .

Точка x 0 называется точкой строгого локального максимума (минимума) функции f (x ), если для всех значений аргумента из некоторой достаточно малой δ - окрестности точки х 0 выполняется неравенство

f (x ) < f (x 0) (f (x ) > f (x 0))

при х x 0 .
Локальный максимум и локальный минимум объединяются общим названием экстремум. Из определения следует, что понятие экстремума носит локальный характер в том смысле, что неравенство f (x ) < f (x 0) (f (x ) > f (x 0)) может и не выполняться для всех значений х в области определения функции, а должно выполняться лишь в некоторой окрестности точки x 0 .

Функция y=f(x) называется дифференцируемой в некоторой точке x 0 , если она имеет в этой точке определенную производную, т.е. если предел отношения существует и конечен.

Если функция дифференцируема в каждой точке некоторого отрезка [а; b] или интервала (а; b), то говорят, что она дифференцируема на отрезке [а; b] или соответственно в интервале (а; b).

Справедлива следующая теорема, устанавливающая связь между дифференцируемыми и непрерывными функциями.

Теорема. Если функция y=f(x) дифференцируема в некоторой точке x 0 , то она в этой точке непрерывна.

Таким образом, из дифференцируемости функции следует ее непрерывность.

Доказательство . Если, то

где б бесконечно малая величина, т.е. величина, стремящаяся к нулю при Дx>0. Но тогда

Дy=f "(x 0) Дx+бДx=> Дy>0 при Дx>0, т.е f(x) - f(x 0)>0 при x>x 0 ,

а это и означает, что функция f(x) непрерывна в точке x 0 . Что и требовалось доказать.

Таким образом, в точках разрыва функция не может иметь производной. Обратное утверждение неверно: существуют непрерывные функции, которые в некоторых точках не являются дифференцируемыми (т.е. не имеют в этих точках производной).

Рассмотрим на рисунке точки а, b, c.

В точке a при Дx>0 отношение не имеет предела (т.к. односторонние пределы различны при Дx>0-0 и Дx>0+0). В точке A графика нет определенной касательной, но есть две различные односторонние касательные с угловыми коэффициентами к 1 и к 2 . Такой тип точек называют угловыми точками.

В точке b при Дx>0 отношение является знакопостоянной бесконечно большой величиной. Функция имеет бесконечную производную. В этой точке график имеет вертикальную касательную. Тип точки - "точка перегиба" c вертикальной касательной.

В точке c односторонние производные являются бесконечно большими величинами разных знаков. В этой точке график имеет две слившиеся вертикальные касательные. Тип - "точка возврата" с вертикальной касательной - частный случай угловой точки.

1. Рассмотрим функцию y=|x|. Эта функция непрерывна в точке

Покажем, что она не имеет производной в этой точке.

f(0+Дx) = f(Дx) = |Дx|. Следовательно, Дy = f(Дx) - f(0) = |Дx|

Но тогда при Дx< 0 (т.е. при Дx стремящемся к 0 слева)

А при Дx > 0

Т.о., отношение при Дx> 0 справа и слева имеет различные пределы, а это значит, что отношение предела не имеет, т.е. производная функции y=|x| в точке x= 0 не существует. Геометрически это значит, что в точке x= 0 данная "кривая" не имеет определенной касательной (в этой точке их две).

2. Функция определена и непрерывна на всей числовой прямой. Выясним, имеет ли эта функция производную при x= 0.

Следовательно, рассматриваемая функция не дифференцируема в точке x= 0. Касательная к кривой в этой точке образует с осью абсцисс угол p/2, т.е. совпадает с осью Oy.