Передача и принятие информации в мозг. Из чего состоит мозг человека. Сложные нейронные сети и высшие функции мозга

При этом, несмотря на доли секунды задержки, реализованный учеными интерфейс мозг-компьютер-интернет-компьютер-мозг, позволил одному человеку управлять движениями другого человека. В связи с тем, что данные работы проводятся под эгидой Исследовательского управления армии США (Army Research Office), совершенно неудивительно, что в последней демонстрации использовалась игра-стрелялка и выполнялась имитация действий с взрывными устройствами. Американские военные видят в такой технологии возможность при помощи прямой информационной передачи обойти языковый барьер и различия в опыте между двумя людьми, которым требуется совместными усилиями выполнить некоторую, возможно опасную, работу.

Первая демонстрация работоспособности этой системы была проведена в прошлом году. А нынешняя демонстрация не только подтвердила работоспособность самой идеи, но и показала некоторые расширенные ее возможности. Как и раньше, один из участников, тот, который дистанционно управляет действиями другого человека, одевает ЭЭГ-датчики, при помощи которых компьютер считывает картины мозговой деятельности определенных участков мозга. Эти данные оцифровываются и передаются через Интернет другому компьютеру, который выполняет всю последовательность в обратном порядке. Второй человек, исполнитель, находится под воздействием магнитного поля, индуцируемого катушкой, направленной в область мозга, которая управляет движениями рук. Человек-оператор может послать команду другому человеку и для этого ему не нужно даже двигаться, ему достаточно только представить себе, будто бы он двигает своей рукой. Человек-исполнитель получает команды извне при помощи технологии трансчерепного магнитного возбуждения и его руки движутся независимо от его сознания.

В своих экспериментах исследователи проверили работоспособность системы на трех парах участников. Оператор и исполнитель всегда находились в двух зданиях, расстояние между которыми было равно 1.5 километрам и между которыми была проложена только одна линия цифровой связи. «Первый оператор был задействован в компьютерной игре, в которой он должен был защитить город от нападения, используя оружие различных типов и сбивая ракеты, запускаемые неприятелем. При этом, он был полностью лишен возможности физического воздействия на игровой процесс. Единственный способ, которым оператор мог играть в игру, заключался в мысленном управлении движениями своих рук и пальцев, - пишут исследователи из Вашингтона. - Точность игры от пары к паре различалась весьма сильно и составляла от 25 до 83 процентов. А самый большой уровень ошибок пришелся на долю ошибки выполнения команды „огонь“».

В настоящее время исследователи получили грант в размере миллиона долларов от фонда W. M. Keck Foundation, благодаря которому они смогут продолжить и расширить область своих исследований. В рамках нового этапа исследователи собираются научиться расшифровывать и передавать более сложные мозговые процессы, расширить количество типов передаваемой информации, что позволит реализовать передачу понятий, мыслей и правил. Благодаря этому, по крайней мере на это рассчитывают ученые, станет возможной реализация в недалеком будущем таких фантастических технологий, при помощи которых, к примеру, блестящие ученые смогут передавать ученикам свои знания напрямую, или виртуозные музыканты или хирурги смогут дистанционно производить операции, действуя руками других людей.

Принципы передачи информации и структурная организация мозга


План

Введение

Принципы передачи информации и структурная организация мозга

Взаимосвязи в простых нервных системах

Сложные нейронные сети и высшие функции мозга

Строение сетчатки

Образы и связи нейронов

Тело клетки, дендриты аксоны

Методы идентификации нейронов и прослеживание их связей. Ненервные элементы мозга

Группировка клеток в соответствии с функцией

Подтипы клеток и функция

Конвергенция и дивергенция связей

Литература


Введение

Термины «нейробиология» и «нейронауки» вошли в обиход в 60-е годы XX в., когда Стивен Куффлер создал в медицинской школе Гарвардского университета первый факультет, сотрудниками которого стали физиологи, анатомы и биохимики. Работая вместе, они решали проблемы функционирования и развития нервной системы, исследовали молекулярные механизмы работы мозга.

Центральная нервная система представляет собой непрерывно работающий конгломерат клеток, которые постоянно получают информацию, анализируют ее, перерабатывают и принимают решения. Мозг способен также брать инициативу на себя и производить координированные, эффективные мышечные сокращения для ходьбы, глотания или пения. Для регуляции многих аспектов поведения и для прямого или непрямого контроля всего тела, нервная система обладает огромным количеством линий коммуникаций, обеспечиваемых нервными клетками (нейронами). Нейроны представляют собой основную единицу, или составной блок, мозга



Взаимосвязи в простых нервных системах

События, которые происходят при реализации простых рефлексов, могут быть прослежены и проанализированы детально. Например, когда по коленной связке ударяют маленьким молоточком, мышцы и сухожилия бедра растягиваются и электрические импульсы по сенсорным нервным волокнам идут в спинной мозг, в котором возбуждаются моторные клетки, производя импульсы и активируя мышечные сокращения. Конечным результатом является распрямление ноги в коленном суставе. Такие упрощенные схемы очень важны для регулировки мышечных сокращений, управляющих движениями конечностей. В таком простом рефлексе, в котором стимул ведет к определенному выходу, роль сигналов и взаимодействий всего двух видов клеток может быть успешно проанализирована.

Сложные нейронные сети и высшие функции мозга

Анализ взаимодействия нейронов в сложных путях, вовлекающих в буквальном смысле миллионы нейронов, существенно более труден, чем анализ простых рефлексов. Пере-

дача информации в мозг при восприятии звука, прикосновения, запаха или зрительного образа требует последовательного вовлечения нейрона за нейроном, так же как и при выполнении простого произвольного движения. Серьезная проблема при анализе взаимодействия нейронов и структуры сети возникает из-за плотной упаковки нервных клеток, сложности их взаимосвязей и обилия типов клеток. Мозг устроен не так, как печень, которая состоит из одинаковых популяций клеток. Если вы обнаружили, как работает одна область печени, то вы знаете очень много о печени в целом. Знания о мозжечке, однако, ничего не скажут вам о работе сетчатки или любой другой части центральной нервной системы.

Несмотря на огромную сложность нервной системы, сейчас возможно проанализировать много способов взаимодействия нейронов при восприятии. Например, записывая активность нейронов в пути от глаза к мозгу, можно проследить сигналы сначала в клетках, специфически отвечающих на свет, и затем, шаг за шагом, по последовательным переключениям, до высших центров мозга.

Интересной особенностью работы зрительной системы является способность выделять контрастные образы, цвета и движения в огромном диапазоне интенсивностей цвета. Когда вы читаете эту страницу, сигналы внутри глаза обеспечивают возможность для черных букв выделяться на белой странице в слабоосвещенной комнате или при ярком солнечном освещении Специфические связи в мозге образуют единую картину, несмотря на то, что два глаза расположены раздельно и сканируют отличающиеся области внешнего мира. Более того, существуют механизмы, обеспечивающие постоянство образа (хотя наши глаза непрерывно двигаются) и дающие точную информацию о расстоянии до страницы.

Каким образом связи нервных клеток обеспечивают подобные явления? Несмотря на то, что мы еще не способны дать полное объяснение, сейчас многое известно о том, как эти свойства зрения обеспечиваются простыми нейрональными сетями в глазе и на начальных стадиях переключения в мозге. Конечно, остается много вопросов о том, каковы связи между свойствами нейронов и поведением. Так, для того чтобы прочесть страницу, вы должны сохранять определенное положение тела, головы и рук. Далее, мозг должен обеспечить постоянное увлажнение глазного яблока, постоянство дыхания и многие другие непроизвольные и неподконтрольные сознанию функции.

Функционирование сетчатки является хорошим примером основных принципов работы нервной системы


Рис. 1.1. Пути от глаза до мозга через оптический нерв и оптический тракт.

Строение сетчатки

Анализ зрительного мира зависит от информации, поступающей от сетчатки, где происходит первая стадия обработки, устанавливающая пределы для нашего восприятия. На рис. 1.1 показаны пути от глаза до высших центров мозга. Изображение, попадающее на сетчатку, перевернуто, но во всех других аспектах представляет собой добросовестное представление о внешнем мире. Каким образом эта картинка может быть передана в наш мозг посредством электрических сигналов, которые возникают в сетчатке и затем путешествуют по оптическим нервам?

Образы и связи нейронов

На рис. 1.2 показаны разные типы клеток и их расположение в сетчатке. Свет, попадающий в глаз, проходит сквозь слои прозрачных клеток и достигает фоторецепторов. Сигналы, передаваемые из глаза по волокнам оптического нерва, являются единственными информационными сигналами, на которых основано наше зрение.

Схема прохождения информации по сетчатке (рис. 1.2А) была предложена Сантьяго Рамон-и-Кахалем1) в конце XIX века. Он был одним из величайших исследователей нервной системы и проводил эксперименты на самых разных животных. Он сделал существенное обобщение о том, что форма и расположение нейронов, так же как область возникновения и конечная мишень нейрональных сигналов в сети, дают важнейшую информацию об функционировании нервной системы.

На рис. 1.2 ясно видно, что клетки в сетчатке, как и в других частях центральной нервной системы (ЦНС), очень плотно упакованы. Вначале морфологам приходилось разрывать нервную ткань на части, чтобы увидеть отдельные нервные клетки. Методы, при которых окрашивают все нейроны, практически бесполезны для исследования формы и связи клеток, потому что такие структуры, как сетчатка, выглядят подобно темному пятну переплетенных клеток и отростков. Электронная микрофотография на рис. 1.3 показывает, что экстраклеточное пространство вокруг нейронов и поддерживающих клеток составляет всего 25 нанометров в ширину. Большая часть рисунков Рамон-и-Кахаля была сделана с помощью метода окраски по Гольджи, который окрашивает с помощью неизвестного механизма всего несколько случайных нейронов из всей популяции, но эти несколько нейронов окрашены полностью.


Рис. 1.2. Структура и связи клеток в сетчатке млекопитающих. (А) Схема направления сигнала от рецептора к оптическому нерву по Рамон-и-Кахалю. (В) Распределение по Рамон-и-Кахалю клеточных элементов сетчатки. (С) Рисунки палочки и колбочки сетчатки человека.


Рис. 1.3. Плотная упаковка нейронов в сетчатке обезьяны. Помечена одна палочка (R) и одна колбочка (С).


Схема на рис. 1.2 показывает принцип упорядоченного расположения нейронов в сетчатке. Легко отличить фоторецепторы, биполярные и ганглиозные клетки. Направление передачи идет от входа к выходу, от фоторецепторов к ганглиозным клеткам. Кроме того, два других типа клеток, горизонтальные и амакриновые, образуют связи, соединяющие разные пути. Одной из целей нейробиологии, присутствующей в рисунках Рамон-и-Кахаля, является стремление понять, как каждая клетка участвует в создании картины мира, которую мы наблюдаем.

Тело клетки, дендриты, аксоны

Ганглиозная клетка, показанная на рис. 1.4, иллюстрирует особенности строения нервных клеток, присущие всем нейронам центральной и периферической нервной системы. Клеточное тело содержит ядро и другие внутриклеточные органеллы, общие для всех клеток. Длинный отросток, который покидает тело клетки и образует связь с клеткой--мишенью, называется аксоном. Термины дендрит, тело клетки и аксон применяются к отросткам, на которых входящие волокна образуют контакты, играющие роль принимающих станций для возбуждения или торможения. Кроме ганглиозной клетки, на рис. 1.4 показаны другие виды нейронов. Термины для описания структуры нейрона, в частности дендритов, несколько спорны, но, тем не менее, они удобны и широко применяются.

Не все нейроны соответствуют простому строению клетки, показанному на рис. 1.4. У некоторых нейронов нет аксонов; у других есть аксоны, на которых образуется связь. Есть клетки, чьи дендриты могут проводить импульсы и образовывать связи с клетками--мишенями. Если ганглиозная клетка соответствует схеме стандартного нейрона с дендритами, телом и аксоном, то другие клетки не соответствуют этому стандарту. Например, у фоторецепторов (рис. 1.2С) нет очевидных дендритов. Активность фоторецепторов не вызывается другими нейронами, но активируется внешними стимулами, освещением. Другим исключением в сетчатке является отсутствие, аксонов у фоторецепторов.


Методы идентификации нейронов и прослеживание их связей

Хотя техника Гольджи все еще широко используется, многие новые подходы облегчили функциональную идентификацию нейронов и синаптических связей. Молекулы, которые окрашивают нейрон полностью, могут быть инъецированы через микропипетку, которая одновременно регистрирует электрический сигнал. Флуоресцентные маркеры, такие как люцифер желтый, позволяют увидеть самые тонкие отростки в живой клетке. Внутриклеточно могут быть введены такие маркеры, как фермент пероксидазы хрена (ПХ) или биоцитин; после фиксации они образуют плотный продукт или ярко светятся в флуоресцентном свете. Нейроны можно окрасить пероксидазой хрена и при экстраклеточной аппликации; фермент захватывается и транспортируется в тело клетки. Флуоресцентные карбоциановые красители при соприкосновении с мембраной нейрона растворяются и диффундируют по всей поверхности клетки.


Рис. 1.4. Формы и размеры нейронов.


Рис. 1.5. Группа биполярных клеток, окрашенных антителом на фермент фосфокиназа С. Только содержащие фермент клетки окрасились.


Эти приемы очень важны для прослеживания прохождения аксонов из одной части нервной системы в другую.

Для описания специфических нейронов, дендритов и синапсов путем избирательного маркирования внутриклеточных или мембранных компонентов используют антитела. Антитела успешно применяются для прослеживания миграции и дифференциации нервных клеток в онтогенезе. Дополнительным подходом для описания нейронов является гибридизация in situ: специфически меченые зонды маркируют мРНК нейрона, которая кодирует синтез канала, рецептора, передатчика или структурного элемента.

Ненервные элементы мозга

Глиальные клетки. В отличие от нейронов, у них нет аксонов или дендритов и они не связаны напрямую с нервными клетками. Глиальных клеток очень много в нервной системе. Они выполняют много разных функций, связанных с передачей сигнала. Например, аксоны ганглиозных клеток сетчатки, составляющие оптический нерв, проводят импульсы очень быстро, потому что они окружены изолирующей липидной оболочкой, называемой миэлин. Миэлин формируется глиальными клетками, которые оборачиваются вокруг аксонов при онтогенетическом развитии. Глиальные клетки сетчатки известны как мюллеровские клетки.


Группировка клеток в соответствии с функцией

Замечательным свойством сетчатки является расположение клеток в соответствии с функцией. Клеточные тела фоторецепторов, горизонтальных, биполярных, амакриновых и ганглиозных клеток расположены отчетливыми слоями. Подобная слоистость наблюдается повсеместно в мозге. Например, структура, в которой волокна оптического нерва заканчиваются (латеральное коленчатое тело), состоит из 6 слоев клеток, которые легко различить даже невооруженным глазом. Во многих областях нервной системы клетки со сходными функциями сгруппированы в отчетливые шарообразные структуры, известные как ядра (не путайте с ядром клетки) или ганглии (не путайте с ганглиозными клетками сетчатки).

Подтипы клеток и функция

Существует несколько отчетливых типов ганглиозных, горизонтальных, биполярных и амакриновых клеток, каждый из которых обладает характерной морфологией, специфичностью медиатора и физиологическими свойствами. Например, фоторецепторы разделяются на два легко различимых класса - палочки и колбочки, - которые выполняют различные функции. Удлиненные палочки исключительно чувствительны к малейшим изменениям в освещении. Когда вы читаете эту страницу, рассеянный свет слишком ярок для палочек, которые функционируют только в слабом свете после длительного периода в темноте. Колбочки отвечают на зрительные стимулы в ярком свете. Более того, колбочки далее подразделяются на подтипы фоторецепторов, чувствительные к красному, зеленому или синему цвету. Амакриновые клетки являются ярким примером клеточного разнообразия: более 20 типов может быть выделено по структурным и физиологическим критериям.

Таким образом, сетчатка иллюстрирует глубочайшие проблемы современной нейробиологии. Неизвестно, для чего нужно столько типов амакриновых клеток и какие разные функции выполняет каждый из этих типов клеток. Отрезвляет сознание того, что функция подавляющего большинства нервных клеток центральной, периферической и висцеральной нервной системы неизвестна. В то же время это неведение подсказывает, что многие основные принципы роботы мозга еще не поняты.

Конвергенция и дивергенция связей

Например, наблюдается сильное уменьшение количества вовлеченных клеток на пути от рецепторов к ганглиозным клеткам. Выходы более чем 100 миллионов рецепторов конвергируют на 1 миллионе ганглиозных клеток, аксоны которых составляют оптический нерв. Таким образом, многие (но не все) ганглиозные клетки получают входы от большого количества фоторецепторов (конвергенция) через вставочные клетки. В свою очередь, одна ганглиозная клетка интенсивно ветвится и оканчивается на многих клетках-мишенях.

Кроме того, в отличие от упрошенной схемы, стрелки должны показывать в стороны для обозначения взаимодействия между клетками в одном слое (латеральные связи) и даже в противоположные стороны - например, назад от горизонтальных клеток к фоторецепторам (возвратные связи). Такие конвергентные, дивергентные, латеральные и возвратные влияния являются постоянными свойствами большинства нервных путей по всей нервной системе. Таким образом, простая пошаговая обработка сигнала затруднена параллельными и обратными взаимодействиями.


Клеточная и молекулярная биология нейронов

Как и другие типы клеток организма, нейроны в полной мере обладают клеточными механизмами метаболической активности, синтеза белков мембраны (например, белков ионных каналов и рецепторов). Более того, белки ионных каналов и рецепторов направленно транспортируются к местам локализации в клеточной мембране. Специфичные для натрия или калия каналы расположены на мембране аксонов ганглиозных клеток дискретными группами (кластерами). Эти каналы участвуют в инициации и проведении ПД.

Пресинаптические терминали, образованные отростками фоторецепторов, биполярных клеток и других нейронов, содержат в своей мембране специфические каналы, через которые могут проходить ионы кальция. Вход кальция запускает выделение медиатора. Каждый тип нейронов синтезирует, хранит и выделяет определенный вид медиатора(ов). В отличие от многих других белков мембраны, рецепторы для специфических медиаторов расположены в точно определенных местах - постсинаптических мембранах. Среди белков мембраны известны также белки-насосы или транспортные белки, роль которых заключается в сохранении постоянства внутреннего содержимого клетки.

Основным отличием нервных клеток от остальных видов клеток организма является наличие длинного аксона. Так как в аксонах нет биохимической «кухни» для синтеза белков, все основные молекулы должны переноситься к терминалям с помощью процесса, называемого аксональным транспортом, причем часто на очень большие расстояния. Все молекулы, необходимые для поддержания структуры и функции, равно как и молекулымембранных каналов, путешествуют от тела клетки этим путем. Точно так же и молекулы, захваченные мембраной терминалей, проделывают обратный путь к телу клетки, используя аксональный транспорт.

Нейроны отличаются от большинства клеток еше и тем, что, за небольшим исключением, не могут делиться. Это означает, что у взрослых животных погибшие нейроны не могут быть заменены.

Регуляция развития нервной системы

Высокая степень организации такой структуры, как сетчатка, ставит новые проблемы. Если для сборки компьютера необходим человеческий мозг, то никто не контролирует мозг во время развития и установления его связей. Пока еще остается загадкой, как правильная «сборка» частей мозга приводит к появлению его уникальных свойств.

В зрелой сетчатке каждый тип клеток расположен в соответствующем слое или подслое и образует строго определенные связи с соответствующими клетками-мишенями. Такое устройство является необходимым условием правильного функционирования. Например, для развития нормальных ганглиозных клеток клетка-предшественник должна разделиться, мигрировать в определенное место, дифференцироваться в определенную форму и образовать специфические синаптические связи.

Аксоны этой клетки должны найти через значительное расстояние (оптический нерв) определенный слой клеток-мишеней в следующем звене синаптического переключения. Аналогичные процессы происходят во всех отделах нервной системы, в результате чего образуются сложные структуры со специфическими функциями.

Исследование механизмов образования таких сложных структур, как сетчатка, является одной из ключевых проблем современной нейробиологии. Понимание того, каким образом сложные взаимосвязи нейронов образуются в процессе индивидуального развития (онтогенезе), может помочь описать свойства и происхождение функциональных расстройств мозга. Некоторые молекулы могут играть ключевую роль в дифференциации, росте, миграции, образовании синапсов и выживании нейронов. Такие молекулы в настоящее время описываются все чаще. Интересно отметить, что электрические сигналы регулируют молекулярные сигналы, которые запускают рост аксонов и образование связей. Активность играет роль в установлении паттерна связей.

Генетические подходы позволяют идентифицировать гены, которые контролируют дифференциацию целых органов, таких как глаз в целом. Геринг с коллегами исследовал экспрессию гена eyeless у плодовой мушки Drosophila, который контролирует развитие глаз. Удаление этого гена из генома приводит к тому, что глаза не развиваются. Гомологичные гены у мышей и человека (известные как small eye и aniridia) похожи по структуре. Если гомологичный ген eyeless млекопитающих искусственно встроен и экспрессируется у мушки, то у этого животного развиваются дополнительные (мушиные по структуре) глаза на усиках, крыльях и ногах. Это позволяет предположить, что этот ген одинаково управляет образованием глаза у мухи или мыши, несмотря на полностью различные структуру и свойства глаз насекомых и млекопитающих.

Регенерация нервной системы после травмы

Нервная система не только устанавливает связи во время развития, но может восстанавливать некоторые связи после повреждения (ваш компьютер этого делать не может). Например, аксоны в руке могут прорастать после повреждения и устанавливать связи; рука опять может двигаться и ощущать прикосновения. Аналогично, у лягушки, рыбы или беспозвоночного животного вслед за разрушениями в нервной системе наблюдается регенерация аксонов и восстановление функции. После перерезки оптического нерва у лягушки или рыбы волокна опять прорастают и животное может видеть. Однако, эта способность не присуща центральной нервной системе взрослых позвоночных животных - у них регенерация не происходит. Молекулярные сигналы, которые блокируют регенерацию, и их биологическое значение для функционирования нервной системы неизвестны

Выводы

∙ Нейроны связаны друг с другом строго определенным способом.

∙ Информация от клетки к клетке передается через синапсы.

∙ В относительно простых системах, таких как сетчатка глаза, можно проследить все связи и понять значение межклеточных сигналов.

∙ Нервные клетки мозга являются материальными элементами восприятия.

∙ Сигналы в нейронах высоко стереотипны и одинаковы для всех животных.

∙ Потенциалы действия без потерь могут проходить большие расстояния.

∙ Локальные градуальные потенциалы зависят от пассивных электрических свойств нейронов и распространяются только на короткие расстояния.

∙ Особое строение нервных клеток требует специализированного механизма аксонального транспорта белков и органелл от и к телу клетки.

∙ Во время индивидуального развития нейроны мигрируют к окончательному месторасположению и устанавливают связи с мишенями.

∙ Молекулярные сигналы управляют ростом аксонов.


Список литературы


Пенроуз Р. НОВЫЙ УМ КОРОЛЯ. О компьютерах, мышлении и законах физики.

Грегори Р. Л. Разумный глаз.

Леках В. А. Ключ к пониманию физиологии.

Гамов Г., Ичас М. Мистер Томпкинс внутри самого себя: Приключения в новой биологии.

Кожедуб Р. Г. Мембранные и синоптические модификации в проявлениях основных принципов работы головного мозга.

Коллектив ученых из Испании, Франции и Англии сообщил о завершении первого в истории эксперимента по передаче сигнала между сознаниями двух людей при помощи исключительно неинвазивных технологий. Сигнал, состоящий из 140 битов информации, удалось передать из Индии во Францию через интернет. Работа опубликована в PLOS One .

Общая схема эксперимента. Изображение: статья в PLOS one


В основе эксперимента лежали интерфейсы «мозг-компьютер» (BCI) и «компьютер-мозг» (CBI), сигнал передавался через интернет. В качестве сообщения в конечном счете выступило слово «hola» - «привет» на испанском (и каталонском). Для кодирования использовали шифр Бэкона , использующий 5 битов на букву. Слово передавали 7 раз для набора достаточной статистики, таким образом итоговое сообщение было длиной 140 бит.

Интерфейс «мозг-компьютер» ученые моделировали следующим образом: для кодирования «0» человек-«передатчик» шевелил ступней, для «1» - ладонью. Снимая электроэнцефалограмму с областей коры головного мозга, отвечающих за эти движения, компьютер получил передаваемое сообщение в виде двоичных битов.

С интерфейсом «компьютер-мозг» все обстояло сложнее. На голове человека-«приемника» находили визуальный центр коры головного мозга, при стимуляции которого возникало явление фосфенов - зрительных ощущений, возникающих без информации с глаза. Наличие такого ощущения кодировало «1», отсутствие - «0».


В качестве передающих и принимающих сторон выступали четверо добровольцев возрастом 28-50 лет. Для итогового эксперимента сигнал передавали из Индии во Францию. Для того, чтобы исключить помехи, возникающие от органов чувств, человеку-«приемника» надевали на глаза светонепроницаемую маску, а в уши помещали затычки. Чтобы исключить возможность отгадывания закодированного слова, последовательность сначала дополнительно кодировали для получения псевдослучайного кода, который после передачи подвергали дешифровке для восстановления исходного сообщения.

В результате эксперимента удалось передать 140 битов информации с долей ошибки 4%. Для сравнения, чтобы убедиться, что этот результат статистически значим: вероятность угадать все 140 символов подряд составляет меньше 10 -22 , а чтобы угадать хотя бы 80% из 140 символов - меньше 10 -13 . Таким образом, по мнению ученых, в самом деле имела место прямая передача сигнала от мозга к мозгу.

Новизна и значимость данный работы происходят из того факта, что до сих пор все подобные эксперименты или ограничивались одним из двух интерфейсов, или проводились над лабораторными животными, или включали в себя инвазивные процедуры по вживлению датчиков в живой организм. В данной работе ученым впервые удалось реализовать неинвазивную передачу от человека к человеку.

От сетчатки глаза сигналы направляются в центральную часть анализатора по зрительному нерву, состоящему почти из миллиона нервных волокон. На уровне зрительного перекреста около половины волокон переходит в про­тивоположное полушарие головного мозга, оставшаяся половина поступа­ет в то же (ипсилатеральное) полушарие. Первое переключение волокон зрительного нерва происходит в латеральных коленчатых телах таламуса. От­сюда новые волокна направляются через мозг к зрительной коре большого мозга (рис. 5.17).

По сравнению с сетчаткой коленчатое тело являет собой сравнительно простое образование. Здесь есть лишь один синапс, поскольку приходящие волокна зрительного нерва оканчиваются на клетках, которые посылают свои импульсы в кору. Коленчатое тело содержит шесть слоев клеток, каждый из которых получает вход только от одного глаза. Четыре верхних являются мел­коклеточными, два нижних - крупноклеточными, поэтому верхние слои на­зываются парвоцеллюлярными (parvo - мелкий, cellula - клетка, лат.} а ниж­ние - магноцеллюлярными (magnus - большой, лат.) (рис. 5.18).

Эти два типа слоев получают информацию от различных ганглиозных клеток, связанных с различными типами биполярных клеток и рецепторов. Каждая клетка коленчатого тела активируется от рецептивного поля сетчат­ки и имеет “on”- или “ofrV-центры и периферию обратного знака. Однако между клетками коленчатого тела и ганглиозными клетками сетчатки суще-

Рис. 5 17 Передача зрительной информации в мозг. 1- глаз; 2 - сетчатка; 3 - зрительный нерв; 4 - зрительный перекрест; 5 - наружное коленчатое тело, 6 - зрительная радиация; 7 - зрительная кора; 8 - затылочные доли (Линдсней, Норман, 1974)

мозга - физическая основа зрения. Большинство путей, ведущих от сетчатки к зрительной коре в задней части полушарий, проходит через наружное коленчатое тело. На поперечном срезе этой подкорковой структуры видны шесть клеточных слоев, два из которых соответ­ствуют магноцеллюлярным связям (М), а четыре - парвоцеллюлярным (П) (Зеки, 1992).

ствуют различия, из которых наиболее существенным является значитель­но более выраженная способность периферии рецептивного поля клеток ко­ленчатого тела подавлять эффект центра, т. е. они в большей степени спе­циализированы (Хьюбель, 1974).

Нейроны латеральных коленчатых тел посылают свои аксоны в первич­ную зрительную кору, называемую также зоной VI (visual - зрительный, англ.). Первичная зрительная (стриарная) кора состоит из двух параллель­ных и в значительной степени независимых систем - магноцеллюлярной и парвоцеллюлярной, названных соответственно слоям коленчатых тел тала-муса (Zeki, Shopp, 1988). Магноцеллюлярная система встречается у всех мле­копитающих и поэтому имеет более раннее происхождение. Парвоцеллю-лярная система есть только у приматов, что свидетельствует о ее более по­зднем эволюционном происхождении (Carlson, 1992). Магноцеллюлярная система включена в анализ форм, движения и глубины зрительного про­странства. Парвоцеллюлярная система участвует в зрительных функциях, получивших развитие у приматов, таких как цветовое восприятие и точное определение мелких деталей (Merigan, 1989).

Связь коленчатых тел и стриарной коры осуществляется с высокой то­пографической точностью: зона VI фактически содержит “карту” всей по­верхности сетчатки. Поражение любого участка нервного пути, связываю­щего сетчатку с зоной VI, приводит к появлению поля абсолютной слепоты, размеры и положение которого точно соответствуют протяженности и ло-

кализации повреждения в зоне VI. С. Хеншен назвал эту зону корковой сет­чаткой (Зеки, 1992).

Волокна, идущие от латеральных коленчатых тел, контактируют с клет­ками четвертого слоя коры. Отсюда информация, в конечном счете, распро­страняется во все слои. Клетки третьего и пятого слоев коры посылают свои аксоны в более глубокие структуры мозга. Большинство связей между клет­ками стриарной коры идут перпендикулярно поверхности, боковые связи преимущественно короткие. Это позволяет предположить наличие локаль­ности при обработке информации в этой области.

Участок сетчатки, который воздействует на простую клетку коры (рецеп­тивное поле клетки) подобно полям нейронов сетчатки и коленчатых тел, разделен на “on”- и “offr-области. Однако эти поля далеки от правильной окружности. В типичном случае рецептивное поле состоит из очень длин­ной и узкой “оп”-области, к которой примыкают с двух сторон более ши­рокие “о!Г”-участки (Хьюбель, 1974).

Состав мозга человека включает структурные и функционально взаимосвязанные нейроны. Этот орган млекопитающих в зависимости от вида содержит от 100 миллионов до 100 миллиардов нейронов.

Каждый нейрон млекопитающих состоит из клетки – элементарной единицы строения, дендритов (короткий отросток) и аксона (длинный отросток). Тело элементарной единицы строения содержит ядро и цитоплазму.

Аксон выходит из тела клетки и часто порождает множество мелких ветвей, прежде чем попасть в нервные окончания.

Дендриты простираются от тела нервной клетки и получают сообщения от других единиц нервной системы.

Синапсы – это контакты где один нейрон соединяется с другим. Дендриты покрыты синапсами которые образуются концами аксонов от других структурно-функциональных единиц системы.

Состав мозга человека 86 миллиардов нейронов состоящих на 80 % из воды и потребляющих около 20% кислорода предназначенного для всего организма, хотя его масса всего 2% от массы тела.

Как передаются сигналы в мозгу

Когда единицы функциональной системы нейроны получают и отправляют сообщения, они передают электрические импульсы по их аксонам, которые могут варьироваться по длине от сантиметра до одного метра или более. видно что очень сложен.

Многие аксоны покрыты многослойной миелиновой оболочкой, которая ускоряет передачу электрических сигналов по аксону. Эта оболочка сформирована с помощью специализированных элементарных единиц строения глии. В органе центральной системы, глий называется олигодендроцитами, а в периферической нервной системе называется шванновскими клетками. Мозговой центр содержит, по меньшей мере в десять раз больше глия чем единиц нервной системы. Глия выполняет много функций. Значение глия в транспортировке питательных вещества к нейронам, очищение, переработка части мертвых нейронов.

Чтобы передать сигналы функциональные единицы системы организма любого млекопитающего не работают в одиночку. В нейронной цепи, активность одной элементарной единицы строения напрямую влияет на многие другие. Чтобы разобраться в том, как эти взаимодействия управляют функцией мозга, неврологи изучают связи между нервными клетками и как они передают сигналы в мозгу и меняются с течением времени. Это изучение может привести ученых к лучшему пониманию того, как нервная система развивается, подвергается заболеваниям или травмам, нарушаются естественные ритмы мозговых связей. Благодаря новой технологии формирования изображений ученые теперь способны лучше визуализировать цепи, соединяющие участки и состав мозга человека.

Развитие методов , микроскопии и вычислительной техники позволяют ученым начать составлять карты связей между отдельными нервными клетками у животных лучше, чем когда-либо прежде.

Изучив досконально состав мозга человека ученые могут пролить свет на расстройства мозговой деятельности и ошибки в развитии нервной сети, включая аутизм и шизофрению.