Многогранники. Виды многогранников и их свойства. Гранные геометрические тела Геометрическое тело состоящее из 6 граней называется

Разделы: Технология

Цели урока:

  • закрепить знания о геометрических телах, умения и навыки по построению чертежей многогранников;
  • развивать пространственные представления и пространственное мышление;
  • формировать графическую культуру.

Тип урока: комбинированный.

Оснащение урока: интерактивная доска MIMIO, мультимедийный проектор, компьютеры, проект mimo для интерактивной доски, мультимедийная презентация, программа «Компас-3D LT».

ХОД УРОКА

I. Организационный момент

1. Приветствие;

2. Проверка явки учащихся;

3. Проверка готовности к уроку;

4. Заполнение классного журнала (и электронного)

II. Повторение раннее изученного материала

На интерактивной доске открыт проект mimo

Лист 1. На уроках математики вы изучали геометрические тела. Несколько тел вы видите на экране. Давайте вспомним их названия. Учащиеся дают названия геометрическим телам, если есть затруднения – помогаю. (Рис. 1).

1 – четырехугольная призма
2 – усеченный конус
3 – треугольная призма
4 – цилиндр
5 – шестиугольная призма
6 – конус
7 – куб
8 – усеченная шестиугольная пирамида

Лист 4 . Задание 2. Даны геометрические тела и названия геометрических тел. Вызываем ученика к доске и вместе с ним перетаскиваем многогранники и тела вращения под названия, а затем перетаскиваем названия геометрических тел (рис. 2).

Делаем вывод, что все тела делятся на многогранники и тела вращения.

Включаем презентацию «Геометрические тела» (Приложение ). Презентация содержит 17 слайдов. Можно использовать презентацию на нескольких уроках, она содержит дополнительный материал (слайды 14-17). Со слайда 8 есть гиперссылка на Презентацию 2 (развертки куба). Презентация 2 содержит 1 слайд, на котором изображены 11 разверток куба (они являются ссылками на видеоролики). На уроке использована интерактивная доска MIMIO, а также учащиеся работают на компьютерах (выполнение практической работы).

Слайд 2. Все геометрические тела делятся на многогранники и тела вращения. Многогранники: призма и пирамида. Тела вращения: цилиндр, конус, шар, тор. Схему учащиеся перечерчивают в рабочую тетрадь.

III. Объяснение нового материала

Слайд 3. Рассмотрим пирамиду. Записываем определение пирамиды. Вершина пирамиды – общая вершина всех граней, обозначается буквой S. Высота пирамиды – перпендикуляр, опущенный из вершины пирамиды (Рис. 3).

Слайд 4. Правильная пирамида. Если основание пирамиды - правильный многоугольник, а высота опускается в центр основания, то - пирамида правильная.
В правильной пирамиде все боковые ребра равны, все боковые грани равные равнобедренные треугольники.
Высота треугольника боковой грани правильной пирамиды называется - апофема правильной пирамиды .

Слайд 5. Анимация построения правильной шестиугольной пирамиды с обозначением ее основных элементов (Рис. 4).

Слайд 6 . Записываем в тетрадь определение призмы. Призма – многогранник, у которого два основания (равные, параллельно расположенные многоугольники), а боковые грани параллелограммы. Призма может быть четырехугольной, пятиугольной, шестиугольной и т.д. Призма называется по фигуре, лежащей в основании. Анимация построения правильной шестиугольной призмы с обозначением ее основных элементов (Рис. 5).

Слайд 7. Правильная призма – это прямая призма, в основании которой лежит правильный многоугольник. Параллелепипед – правильная четырехугольная призма (Рис. 6).

Слайд 8. Куб – параллелепипед, все грани которого квадраты (Рис. 7).

(Дополнительный материал: на слайде есть гиперссылка на презентацию с развертками куба, всего 11 разных разверток).
Слайд 9. Записываем определение цилиндра.Тело вращения – цилиндр, образованное вращением прямоугольника вокруг оси, проходящей через одну из его сторон. Анимация получения цилиндра (Рис. 8).

Слайд 10. Конус – тело вращения, образованное вращением прямоугольного треугольника вокруг оси, проходящей через один из его катетов (Рис.9).

Слайд 11. Усеченный конус – тело вращения, образованное вращением прямоугольной трапеции вокруг оси, проходящей через ее высоту (Рис. 10).

Слайд 12. Шар – тело вращения, образованное вращением круга вокруг оси, проходящей через его диаметр (Рис. 11).

Слайд 13. Тор – тело вращения, образованное вращением круга вокруг оси, параллельной диаметру круга (Рис. 12).

Учащиеся записывают определения геометрических тел в тетрадь.

IV. Практическая работа«Построение чертежа правильной призмы»

Переключаемся на проект mimio

Лист 7 . Дана треугольная правильная призма. В основании лежит правильный треугольник. Высота призмы = 70 мм, а сторона основания = 40 мм. Рассматриваем призму (направление главного вида показано стрелкой), определяем плоские фигуры, который мы увидим на виде спереди, сверху и слева. Вытаскиваем изображения видов и расставляем на поле чертежа (Рис. 13).

Учащиеся самостоятельно выполняют чертеж правильной шестиугольной призмы в программе «Компас – 3D». Размеры призмы: высота – 60 мм, диаметр описанной окружности вокруг основания – 50 мм.
Построение чертежа с вида сверху (Рис. 14).

Затем строится вид спереди (Рис. 15).

Затем строится вид слева и наносятся размеры (Рис. 16).

Работы проверяются и сохраняются на компьютерах учащимися.

V. Дополнительный материал по теме

Слайд 14 . Правильная усеченная пирамида (Рис. 17).

Слайд 15. Пирамида, усеченная наклонной плоскостью (Рис. 18).

Слайд 16. Развертка правильной треугольной пирамиды (Рис. 19).

Слайд 17. Развертка параллелепипеда (Рис. 20).

ГЕОМЕТРИЧЕСКИЕ ТЕЛА, ИХ ПОВЕРХНОСТИ И ОБЪЁМЫ

ГЕОМЕТРИЧЕСКОЕ ТЕЛО. МНОГОГРАННИК

Определение : Объединение ограниченной пространственной области и ее границы называется геометрическим телом.

Граница – поверхность геометрического тела.

Пространственная область – внутренняя область геометрического тела.

Определение : Многогранником называется геометрическое тело, поверхностью которого является конечное число многоугольников, каждая сторона любого многоугольника является стороной двух и только двух граней, не лежащих в одной плоскости. Многоугольники – грани многогранника.

Вершины и стороны граней – вершины и ребра многогранника.

Многогранники классифицируются по числу граней: тетраэдр (четырехгранник), пентаэдр (пятигранник), гексаэдр (шестигранник), октаэдр (восьмигранник), додекаэдр (двенадцатигранник), икосаэдр (двадцатигранник).

Определение : Диагональю многогранника называется отрезок, соединяющий две вершины, не принадлежащие одной грани.

ПРИЗМА. ПАРАЛЛЕЛЕПИПЕД

Определение : Многогранник, две грани которого многоугольники, принадлежащие параллельным плоскостям, а остальные грани – параллелограммы, называется призмой. Многоугольники, принадлежащие параллельным плоскостям – основания призмы. Параллелограммы – боковые грани призмы.

Стороны параллелограммов, соединяющие соответствующие вершины оснований призмы – боковые ребра призмы.

А 1 А 2 …А п В 1 В 2 …В п – п-угольная призма;

А 1 А 2 …А п; В 1 В 2 …В п – основания п-угольной призмы;

А 1 В 1 В 2 А 2 ; …; А 1 В 1 В п А п – боковые грани п-угольной призмы;

А 1 В 1 ; А 2 В 2 ; … ; А п В п – боковые ребра п-угольной призмы.

Свойства :

Основания призмы равны и параллельны.



Боковые ребра призмы равны и параллельны.

Определение : Призма называется прямой, если ее боковые ребра перпендикулярны к основаниям (Рис.1.), в противном случае призма называется наклонной (Рис. 2.).


Рис.1. Рис. 2. Рис.3.

Призма называется треугольной, четырехугольной, пятиугольной, … в зависимости от того, какой многоугольник лежит в ее основании.

Определение : Перпендикуляр, проведенный из какой- либо точки одного основания к плоскости другого основания, называется высотой призмы (Рис. 3.).

В 1 М ^ А 1 А 2 А 3 ; О 1 О 2 ^ А 1 А 2 А 3 ;

В 1 М = О 1 О 2 = h – высота призмы.

Замечание : Высота прямой призмы равна ее боковому ребру.

Определение : Прямая призма называется правильной, если ее основаниями являются правильные многоугольники.

Замечание : Боковые грани правильной призмы – равные прямоугольники.

Справка :

1. Правильный четырехугольник – квадрат;

2. Правильный треугольник – равносторонний треугольник;

3. Правильный шестиугольник.

Определение : Призма, основанием которой является параллелограмм, называется параллелепипедом (Рис. 1.).

Определение : Прямым параллелепипедом называется параллелепипед, боковые ребра которого перпендикулярны основаниям (Рис. 2.).


Свойства :

  1. Противоположные грани параллелепипеда равны и параллельны.
  2. Диагонали параллелепипеда пересекаются и точкой пересечения делятся пополам.
  3. В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов его линейных размеров. d 2 = а 2 + b 2 + с 2
  4. Диагонали прямоугольного параллелепипеда равны.


Упражнения :

  1. Определить диагонали прямоугольного параллелепипеда по его измерениям:

a) 8, 9, 12;

B) 12, 16, 21.

Справка : Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

  1. В прямом параллелепипеде стороны основания равны 5 см и 3 см, а одна из диагоналей равна 4 см. Найти большую диагональ параллелепипеда, зная, что меньшая диагональ, образует с плоскостью основания угол 60°.
  2. В правильной четырехугольной призме площадь основания равна 144 см 2 , а высота равна 14 см. Определить диагональ этой призмы.

ПОВЕРХНОСТЬ ПРИЗМЫ

Определение : Площадью полной поверхности призмы называется сумма площадей всех ее граней.

Определение : Площадью боковой поверхности призмы называется сумма площадей ее боковых граней.

Определение : Перпендикулярным сечением призмы называется многоугольник, полученный при пересечении призмы плоскостью, перпендикулярной ее ребрам.

Теорема : Площадь боковой поверхности призмы равна произведению бокового ребра на периметр перпендикулярного сечения.


Дано :

АВСDА 1 В 1 С 1 D 1 – призма;

А А 1 = l;

l ^ КLMNP;

Р ^ = Р(КLMNP)

Доказать :


Следствие : Площадь боковой поверхности прямой призмы равна произведению периметра ее основания на высоту.

; ;

Упражнения :

Дана наклонная треугольная призма, две боковые грани которой взаимно перпендикулярны, их общее ребро равно 9,6 см и находится на расстоянии 4,8 см и 14 см от двух других рёбер. Найти площадь боковой поверхности призмы.

6. В прямоугольном параллелепипеде его измерения относятся как 1:2:3 (3:7:8). Площадь полной поверхности параллелепипеда равна 352 см 2 . Найти его измерения.

7. Найти площадь полной поверхности прямого параллелепипеда, стороны основания которого равны 8 дм и 12 дм и образуют угол 30°, а боковое ребро равно 6 дм.

8. Площадь полной поверхности куба равна 36 см 2 . Определить его диагональ.

9. Найти ребро куба, если площадь его полной поверхности равна 24 м 2 .

В прямом параллелепипеде стороны основания равны 10 см и 17 см, одна из диагоналей основания равна 21 см. Большая диагональ параллелепипеда равна 29 см. Определить площадь полной поверхности параллелепипеда.

15. В прямом параллелепипеде стороны основания равны 3 см и 8 см, угол между ними равен 60°. Площадь боковой поверхности параллелепипеда равна 220 см 2 . Определить площадь полной поверхности параллелепипеда, площадь меньшего диагонального сечения.

16. Диагональ правильной четырехугольной призмы равна 9 см. Площадь полной поверхности призмы равна 144 см 2 . Определить сторону основания и боковое ребро призмы.

ОБЪЕМ ПРЯМОЙ ПРИЗМЫ

ОСНОВНЫЕ СВОЙСТВА ОБЪЕМОВ

  1. Два равных многогранника имеют один и тот же объём, независимо от их расположения в пространстве.
  2. Объём многогранника, представляющего собой сумму двух смежных многогранников, равен сумме объёмов этих многогранников.
  3. Если из двух многогранников первый целиком содержится внутри второго, то объём первого многогранника не превосходит объёма второго многогранника.

Определение : Многогранники, имеющие равные объёмы, называются равновеликими.

Определение : За единицу объёма принимается объём куба, ребро которого равно единице длины.


ОБЪЁМ ПРЯМОЙ ПРИЗМЫ

Теорема : Объём прямоугольного параллелепипеда равен произведению его линейных размеров.

линейные размеры (измерения)

Теорема : Объём прямой призмы равен произведению площади основания на высоту призмы.

Дано :

ABCA 1 B 1 C 1 – прямая призма;

– основание призмы;

; ;

ОБЪЁМ НАКЛОННОЙ ПРИЗМЫ

Теорема : Объём наклонной призмы равен произведению площади перпендикулярного сечения призмы на её боковое ребро.

Дано :

- наклонная призма;

- боковое ребро;

- перпендикулярное сечение;

Доказать :

Следствие : Объём наклонной призмы равен произведению площади основания на высоту призмы.

Упражнения :

1. В наклонном параллелепипеде стороны перпендикулярного сечения, равные 3 см и 4 см, образуют между собой угол 30°. Боковое ребро параллелепипеда равно 1 дм. Найти объём параллелепипеда.

2. Основанием призмы является правильный треугольник со стороной 4 см. Боковое ребро призмы равно 6 см и составляет с плоскостью основания угол 60°. Найти объём призмы и площадь перпендикулярного сечения призмы.

3. Основанием прямого параллелепипеда является параллелограмм, один из углов которого равен 30°. Площадь основания параллелепипеда равна 16 дм 2 . Площади боковых граней параллелепипеда равны 24 дм 2 и 48 дм 2 . Найти объём параллелепипеда.

4. В прямоугольном параллелепипеде стороны основания относятся как 7:24, а площадь диагонального сечения равна 50 см 2 . Найти площадь боковой поверхности параллелепипеда.

5. В основании прямой призмы лежит ромб со стороной а и углом 60 ° . Сечение, проведённое через большую диагональ основания и вершину тупого угла другого основания, есть прямоугольный треугольник. Найти площадь полной поверхности призмы.

6. Площади боковых граней прямой треугольной призмы равны 425 см 2 , 250 см 2 , 225 см 2 , а площадь основания призмы равна 100 см 2 . Найти объём призмы.

7. Дан наклонный параллелепипед, основание которого – квадрат со стороной 5 дм. Найти объём параллелепипеда, если одно из боковых рёбер образует с каждой прилежащей стороной основания угол 60 ° и равно 1 м.

Основанием прямой призмы является равнобедренный треугольник, боковая сторона которого равна 1 м, а основание 1 м 20 см. Боковое ребро призмы равно высоте основания, опущенной на его боковую сторону. Найти площадь полной поверхности призмы.

Рис. 1. Рис. 2.

Упражнения :

  1. Основанием пирамиды является прямоугольник со сторонами 12 см и 16 см. Каждое боковое ребро пирамиды равно 26 см. Найти высоту пирамиды.
  2. Основанием пирамиды является параллелограмм со сторонами 3 см и 7 см и диагональю 6 см. Высота пирамиды равна 4 см и проходит через точку пересечения диагоналей параллелограмма. Найти боковые рёбра пирамиды.
  3. Высота правильной четырёхугольной пирамиды равна 7 см, а сторона основания равна 8 см. Найти боковое ребро пирамиды.
  4. Основание пирамиды – равнобедренный треугольник, у которого основание равно 6 см и высота равна 9 см. Боковые рёбра пирамиды равны между собой и каждое содержит 13 см. Найти высоту пирамиды.
  5. Основание пирамиды – равнобедренный треугольник с основанием 12 см и боковой стороной 10 см. Боковые грани пирамиды образуют с основанием равные двугранные углы по 45° . Найти высоту пирамиды.

Точка О одинаково удалена от вершин треугольника АВС, следовательно, она является центром окружности, описанной около этого треугольника. Центр окружности, описанной около прямоугольного треугольника, есть середина гипотенузы. Точка О - середина гипотенузы.

.

; .

; ; ; ; .

; , следовательно, .

- равносторонний треугольник, значит, .

; .

по трём сторонам, следовательно, .

;

; ;

;

.

Ответ : .

Замечание : Площадь боковой поверхности неправильнойусечённой пирамиды вычисляется по определению, каксумма площадей её боковых граней.

Упражнения :

ОБЪЁМ ПИРАМИДЫ

Теорема : Объём пирамиды равен одной трети произведения площади основания пирамиды на её высоту.

Дано :

SABC - пирамида;

S(ABC)= S осн.

SО ^ АВС; SО = h.

Доказать :

9. ОБЪЁМ УСЕЧЕННОЙ ПИРАМИДЫ

Дано :

ABCDA 1 B 1 C 1 D 1 - усечённая пирамида;

S(ABCD) = S н.о. ; S (A 1 B 1 C 1 D 1) = S в.о.

h - высота усечённой пирамиды;

Определить: V ус.пир. - ?

.

Упражнения :

  1. Диагональ квадратного основания правильной пирамиды равна 6 см, высота пирамиды равна 15 см. Найти её объём.
  2. Боковое ребро правильной шестиугольной пирамиды равно 14 дм, сторона её основания равна 2 дм. Найти объём пирамиды.
  3. Основанием пирамиды является ромб со стороной 15 см. Боковые грани пирамиды наклонены к плоскости основания под углом 45°. Большая диагональ основания равна 24 см. Найти объём пирамиды.
  4. Найти объём усечённой пирамиды, если площади её оснований равны 98 см 2 и 32 см 2 , а высота соответствующей полной пирамиды равна 14 см.
  5. В пирамиде через середину высоты проведена плоскость, параллельная её основанию. Определить объём образовавшейся усечённой пирамиды, если высота данной пирамиды равна 18 см, а площадь её основания равна 400 см 2 .
  6. Найти объём треугольной пирамиды, боковые рёбра которой попарно перпендикулярны и равны 10 см, 15 см, 9 см.
  7. В треугольной усечённой пирамиде высота равна 10 см, стороны нижнего основания равны 27 м, 29 м, 52 м, а периметр верхнего основания равен 72 м. Найти объём усечённой пирамиды.
  8. Стороны оснований правильной четырёхугольной усечённой пирамиды равны 40 см и 10 см. Площадь её полной поверхности равна 3400 см 2 . Найти объём усечённой пирамиды.

ЦИЛИНДР. ПОВЕРХНОСТЬ И ОБЪЕМ ЦИЛИНДРА.

Определение : Геометрическое тело, полученное при вращении прямоугольника вокруг одной из его сторон, называется прямым круговым цилиндром.

Определение : Цилиндр называется прямым, если его образующие перпендикулярны плоскостям оснований.

AB – ось симметрии, высота цилиндра;AB = H ;

AD – радиус основания цилиндра;AD = R .

Определение : Расстояние между плоскостями оснований является высотой прямого кругового цилиндра.

Радиусом цилиндра называется радиус его основания. Осью цилиндра называется прямая, проходящая через центры оснований. Она параллельна образующим.

Два круга являются основаниями прямого кругового цилиндра. Отрезок, соединяющий точки окружностей оснований и перпендикулярный плоскостям оснований, называется образующей прямого кругового цилиндра.

Определение : Прямоугольник, одна сторона которого равна длине окружности основания цилиндра, а другая – его высоте, называется разверткой боковой поверхности цилиндра.

Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих.

В дальнейшем мы будем рассматривать только прямой цилиндр, называя его для краткости просто цилиндром.

Определение : Цилиндр называется равносторонним, если его высота равна диаметру основания.

Сечения цилиндра.

Сечение цилиндра плоскостью, параллельной его оси, представляет собой прямоугольник. Две его стороны − образующие цилиндра, а две другие − параллельные хорды оснований.

В частности, прямоугольником является осевое сечение. Осевое сечение - сечение цилиндра плоскостью, проходящей через его ось.

Сечение цилиндра плоскостью, параллельной основанию − круг.

Сечение цилиндра плоскостью не параллельной основанию и его оси – овал.

Теорема : Площадь боковой поверхности цилиндра равна произведению длины окружности его основания на высоту (S бок. = 2πRH , где R − радиус основания цилиндра, Н − высота цилиндра).

Определение : Площадью полной поверхности цилиндра называется сумма площадей боковой поверхности и двух оснований.

S осн. = πR 2 S бок. = 2πRH S полн. = 2πRH + 2πR 2 .

Рассмотрим п -угольную прямую призму. При п→∞ периметр многоугольника, лежащего в основании призмы, будет стремиться к длине окружности основания цилиндра, площадь многоугольника, лежащего в основании призмы, будет стремиться к площади круга, являющегося основанием цилиндра. Объём п -угольной прямой призмы будет стремиться к объёму прямого кругового цилиндра.

Определение : Призма называется вписанной в цилиндр, если её основания вписаны в основания цилиндра.

Определение : Цилиндр называется вписанным в призму, если его основания вписаны в основания призмы.

Упражнения :

1. Диагональ осевого сечения цилиндра равна 48 см. Угол между этой диагональю и образующей цилиндра равен 60°. Найти: высоту, радиус основания, площадь основания цилиндра.

2. Площадь осевого сечения цилиндра равна 10 см 2 , а площадь основания - 5 см 2 . Найти высоту цилиндра.

3. Радиус основания цилиндра равен 4 см, а площадь его осевого сечения равна 72 см 2 . Найти объём цилиндра.

Квадрат со стороной, равной а, вращается вокруг внешней оси, которая параллельна его стороне. Ось удалена от квадрата на расстояние, равное стороне квадрата. Найти площадь полной поверхности и объём тела вращения.

11. В ос­но­ва­нии пря­мой приз­мы лежит квад­рат со сто­ро­ной 2. Бо­ко­вые ребра равны

12. В ос­но­ва­нии пря­мой приз­мы лежит пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми 6 и 8. Бо­ко­вые ребра равны . Най­ди­те объем ци­лин­дра, опи­сан­но­го около этой приз­мы.

13. Най­ди­те объем части ци­лин­дра, изоб­ра­жен­ной на ри­сун­ке №1.

14. Най­ди­те объем части ци­лин­дра, изоб­ра­жен­ной на ри­сун­ке №2.

Рис. №1. Рис. №2.

КОНУС. ПОВЕРХНОСТЬ И ОБЪЁМ КОНУСА.

Конус (с греческого «konos») – сосновая шишка.

Конус знаком людям с глубокой древности. В 1906 году была обнаружена книга «О методе», написанная Архимедом (287-212 гг. до н. э.), в этой книге дается решение задачи об объеме общей части пересекающихся цилиндров. Архимед говорит, что это открытие принадлежит древнегреческому философу Демокриту (470-380 гг. до н.э.), который с помощью данного принципа получил формулы для вычисления объема пирамиды и конуса.

Круговым конусом называется тело, которое состоит из круга - основания конуса, точки, не лежащей в плоскости этого круга,- вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания (рис. 1) Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими конуса .

Конус называется прямым , если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания.

У прямого конуса основание высоты совпадает с центром основания. Осью прямого конуса называется прямая, содержащая его высоту.

Определение : Геометрическое тело, полученное при вращении прямоугольного треугольника вокруг одного из катетов, называется прямым круговым конусом.

Определение : Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания.

Определение : Разверткой боковой поверхности конуса называется сектор круга, радиус которого равен образующей конуса, а длина дуги – длине окружности основания конуса.

Сечения конуса.

Плоскость, перпендикулярная оси конуса, пересекает конус по кругу, а боковую поверхность – по окружности с центром на оси конуса.

Плоскость, перпендикулярная оси конуса отсекает от него меньший конус. Оставшаяся часть называется усечённым конусом.

Сечение конуса плоскостью, проходящей через его вершину, представляет собой равнобедренный треугольник, у которого боковые стороны являются образующими конуса.

Определение : Осевым сечением конуса называется сечение, проходящее через ось конуса.

Вывод : Осевое сечение конуса – это равнобедренный треугольник, основанием которого является диаметр основания конуса, а боковые стороны – образующие конуса.

Поверхность конуса состоит из основания и боковой поверхности.

Площадь боковой поверхности конуса можно найти по формуле:

S бок. = πRL, где R – радиус основания, L – длина образующей.

Площадь полной поверхности конуса находится по формуле:

S полн. = πRL + πR 2 , где R – радиус основания, L – длина образующей.

Объём кругового конуса равен V = 1/3 πR 2 H, где R – радиус основания, Н – высота конуса.

Определение : Пирамидой, вписанной в конус, называется такая пирамида, основание которой есть многоугольник, вписанный в окружность основания конуса, а вершиной является вершина конуса. Боковые ребра пирамиды, вписанной в конус, являются образующими конуса.

Определение : Пирамидой, описанной около конуса , называется пирамида, у которой основанием служит многоугольник, описанный около основания конуса, а вершина совпадает с вершиной конуса.

Упражнения :

1. Равнобедренный треугольник с углом при вершине 120 ° и боковой стороной в 20 см вращается вокруг основания. Найти объём тела вращения.

2. Найти высоту конуса, если площадь его боковой поверхности равна 427,2 см 2 и образующая – 17 см.

Прямоугольный треугольник, катеты которого равны 3 см и 4 см, вращается вокруг оси, параллельной гипотенузе и проходящей через вершину прямого угла. Найти площадь полной поверхности и объём тела вращения.

УСЕЧЕННЫЙ КОНУС. ПОВЕРХНОСТЬ И ОБЪЁМ УСЕЧЕННОГО КОНУСА

Определение : Усечённым конусом называется часть конуса, заключённая между его основанием и сечением, параллельным основанию. Круги, лежащие в параллельных плоскостях, называются основаниями усеченного конуса.

Определение : Геометрическое тело, полученное при вращении прямоугольной трапеции вокруг её боковой стороны, перпендикулярной основаниям, называется прямым круговым усечённым конусом.

Определение : Образующей усеченного конуса называется часть образующей полного конуса, заключенная между основаниями.

Определение : Высотой усеченного конуса называется расстояние между его основаниями.

Задача : Пусть дан усеченный конус, радиусы оснований и высота которого известны: r = 5, R = 7, Н = Ö60. Найдите образующую усеченного конуса.

Определение : Прямая, соединяющая центры оснований, называется осью усеченного конуса. Сечение, проходящее через ось, называется осевым. Осевое сечение является равнобедренной трапецией.

Задача : Найдите площадь осевого сечения, если известны радиус верхнего основания, высота и образующая: R = 6, Н = 4, L = 5.

Площадь боковой поверхности усеченного конуса можно найти по формуле:

S бок = π(R + r)L ,

где R – радиус нижнего основания, r L – длина образующей.

Площадь полной поверхности усеченного конуса можно найти по формуле:

S полн. = πR 2 + πr 2 + π(R + r)L ,

где R – радиус нижнего основания, r – радиус верхнего основания, L – длина образующей.

Объём усечённого конуса можно найти следующим образом:

V = 1/3 πH(R 2 + Rr + r 2) ,

где R – радиус нижнего основания, r – радиус верхнего основания, Н – высота конуса.

Упражнения :

Из истории возникновения.

Шаром принято называть тело, ограниченное сферой, т.е. шар и сфера – это разные геометрические тела. Однако оба слова « шар» и « сфера» происходят от одного и того же греческого слова « сфайра» - мяч. При этом слово « шар» образовалось от перехода согласных сф в ш. В XI книге «Начал» Евклид определяет шар как фигуру, описанную вращающимся около неподвижного диаметра полукругом. В древности сфера была в большом почёте. Астрономические наблюдения над небесным сводом неизменно вызывали образ сферы. Сфера всегда широко применялось в различных областях науки и техники.

Определение : Геометрическое тело, полученное при вращении полукруга вокруг его диаметра, называется шаром.

Определение : Радиусом сферы (шара) называется отрезок, соединяющий центр сферы (шара) с любой её точкой.

Определение : Хордой сферы называется отрезок, соединяющий две любые её точки.

Определение : Диаметром сферы называется хорда, проходящая через её центр.

Сечение шара плоскостью.

Любое сечение шара плоскостью есть круг. Центр этого круга – основание перпендикуляра, опущенного из центра шара на секущую плоскость. Сечение, проходящее через центр шара, называется диаметральным сечением (большим кругом).

Касательная плоскость к сфере .

Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания плоскости и сферы.

Многогранники не только занимают видное место в геометрии, но и встречаются в повседневной жизни каждого человека. Не говоря уже об искусственно созданных предметах обихода в виде различных многоугольников, начиная со спичечного коробка и заканчивая архитектурными элементами, в природе также встречаются кристаллы в форме куба (соль), призмы (хрусталь), пирамиды (шеелит), октаэдра (алмаз) и т. д.

Понятие многогранника, виды многогранников в геометрии

Геометрия как наука содержит раздел стереометрию, изучающую характеристики и свойства объёмных тела, стороны которых в трёхмерном пространстве образованы ограниченными плоскостями (гранями), носят название "многогранники". Виды многогранников насчитывают не один десяток представителей, отличающихся количеством и формой граней.

Тем не менее у всех многогранников есть общие свойства:

  1. Все они имеют 3 неотъемлемых компонента: грань (поверхность многоугольника), вершина (углы, образовавшиеся в местах соединения граней), ребро (сторона фигуры или отрезок, образованный в месте стыка двух граней).
  2. Каждое ребро многоугольника соединяет две, и только две грани, которые по отношению друг к другу являются смежными.
  3. Выпуклость означает, что тело полностью расположено только по одну сторону плоскости, на которой лежит одна из граней. Правило применимо ко всем граням многогранника. Такие геометрические фигуры в стереометрии называют термином выпуклые многогранники. Исключение составляют звёздчатые многогранники, которые являются производными правильных многогранных геометрических тел.

Многогранники можно условно разделить на:

  1. Виды выпуклых многогранников, состоящих из следующих классов: обычные или классические (призма, пирамида, параллелепипед), правильные (также называемые Платоновыми телами), полуправильные (второе название - Архимедовы тела).
  2. Невыпуклые многогранники (звёздчатые).

Призма и её свойства

Стереометрия как раздел геометрии изучает свойства трёхмерных фигур, виды многогранников (призма в их числе). Призмой называют геометрическое тело, которое имеет обязательно две совершенно одинаковые грани (их также называют основаниями), лежащие в параллельных плоскостях, и n-ое число боковых граней в виде параллелограммов. В свою очередь, призма имеет также несколько разновидностей, в числе которых такие виды многогранников, как:

  1. Параллелепипед - образуется, если в основании лежит параллелограмм - многоугольник с 2 парами равных противоположных углов и двумя парами конгруэнтных противоположных сторон.
  2. имеет перпендикулярные к основанию рёбра.
  3. характеризуется наличием непрямых углов (отличных от 90) между гранями и основанием.
  4. Правильная призма характеризуется основаниями в виде с равными боковыми гранями.

Основные свойства призмы:

  • Конгруэнтные основания.
  • Все рёбра призмы равны и параллельны по отношению друг к другу.
  • Все боковые грани имеют форму параллелограмма.

Пирамида

Пирамидой называют геометрическое тело, которое состоит из одного основания и из n-го числа треугольных граней, соединяющихся в одной точке - вершине. Следует отметить, что если боковые грани пирамиды представлены обязательно треугольниками, то в основании может быть как треугольный многоугольник, так и четырёхугольник, и пятиугольник, и так до бесконечности. При этом название пирамиды будет соответствовать многоугольнику в основании. Например, если в основании пирамиды лежит треугольник - это , четырёхугольник - четырёхугольная, и т. д.

Пирамиды - это конусоподобные многогранники. Виды многогранников этой группы, кроме вышеперечисленных, включают также следующих представителей:

  1. имеет в основании правильный многоугольник, и высота ее проектируется в центр окружности, вписанной в основание или описанной вокруг него.
  2. Прямоугольная пирамида образуется тогда, когда одно из боковых рёбер пересекается с основанием под прямым углом. В таком случае это ребро справедливо также назвать высотой пирамиды.

Свойства пирамиды:

  • В случае если все боковые рёбра пирамиды конгруэнтны (одинаковой высоты), то все они пересекаются с основанием под одним углом, а вокруг основания можно прочертить окружность с центром, совпадающим с проекцией вершины пирамиды.
  • Если в основании пирамиды лежит правильный многоугольник, то все боковые рёбра конгруэнтны, а грани являются равнобедренными треугольниками.

Правильный многогранник: виды и свойства многогранников

В стереометрии особое место занимают геометрические тела с абсолютно равными между собой гранями, в вершинах которых соединяется одинаковое количество рёбер. Эти тела получили название Платоновы тела, или правильные многогранники. Виды многогранников с такими свойствами насчитывают всего пять фигур:

  1. Тетраэдр.
  2. Гексаэдр.
  3. Октаэдр.
  4. Додекаэдр.
  5. Икосаэдр.

Своим названием правильные многогранники обязаны древнегреческому философу Платону, описавшему эти геометрические тела в своих трудах и связавшему их с природными стихиями: земли, воды, огня, воздуха. Пятой фигуре присуждали сходство со строением Вселенной. По его мнению, атомы природных стихий по форме напоминают виды правильных многогранников. Благодаря своему самому захватывающему свойству - симметричности, эти геометрические тела представляли большой интерес не только для древних математиков и философов, но и для архитекторов, художников и скульпторов всех времён. Наличие всего лишь 5 видов многогранников с абсолютной симметрией считалось фундаментальной находкой, им даже присуждали связь с божественным началом.

Гексаэдр и его свойства

В форме шестигранника преемники Платона предполагали сходство со строением атомов земли. Конечно же, в настоящее время эта гипотеза полностью опровергнута, что, однако, не мешает фигурам и в современности привлекать умы известных деятелей своей эстетичностью.

В геометрии гексаэдр, он же куб, считается частным случаем параллелепипеда, который, в свою очередь, является разновидностью призмы. Соответственно и свойства куба связаны со с той лишь разницей, что все грани и углы куба равны между собой. Из этого вытекают следующие свойства:

  1. Все рёбра куба конгруэнтны и лежат в параллельных плоскостях по отношению друг к другу.
  2. Все грани - конгруэнтные квадраты (всего в кубе их 6), любой из которых может быть принят за основание.
  3. Все межгранные углы равны 90.
  4. Из каждой вершины исходит равное количество рёбер, а именно 3.
  5. Куб имеет 9 которые все пересекаются в точке пересечения диагоналей гексаэдра, именуемой центром симметрии.

Тетраэдр

Тетраэдр - это четырёхгранник с равными гранями в форме треугольников, каждая из вершин которых является точкой соединения трёх граней.

Свойства правильного тетраэдра:

  1. Все грани тетраэда - это из чего следует, что все грани четырёхгранника конгруэнтны.
  2. Так как основание представлено правильной геометрической фигурой, то есть имеет равные стороны, то и грани тетраэдра сходятся под одинаковым углом, то есть все углы равны.
  3. Сумма плоских углов при каждой из вершин равняется 180, так как все углы равны, то любой угол правильного четырёхгранника составляет 60.
  4. Каждая из вершин проецируется в точку пересечения высот противоположной (ортоцентр) грани.

Октаэдр и его свойства

Описывая виды правильных многогранников, нельзя не отметить такой объект, как октаэдр, который визуально можно представить в виде двух склеенных основаниями четырёхугольных правильных пирамид.

Свойства октаэдра:

  1. Само название геометрического тела подсказывает количество его граней. Восьмигранник состоит из 8 конгруэнтных равносторонних треугольников, в каждой из вершин которого сходится равное количество граней, а именно 4.
  2. Так как все грани октаэдра равны, равны и его межгранные углы, каждый из которых равняется 60, а сумма плоских углов любой из вершин составляет, таким образом, 240.

Додекаэдр

Если представить, что все грани геометрического тела представляют собой правильный пятиугольник, то получится додекаэдр - фигура из 12 многоугольников.

Свойства додекаэдра:

  1. В каждой вершине пересекаются по три грани.
  2. Все грани равны и имеют одинаковую длину рёбер, а также равную площадь.
  3. У додекаэдра 15 осей и плоскостей симметрии, причём любая из них проходит через вершину грани и середину противоположного ей ребра.

Икосаэдр

Не менее интересная, чем додекаэдр, фигура икосаэдр представляет собой объёмное геометрическое тело с 20 равными гранями. Среди свойств правильного двадцатигранника можно отметить следующие:

  1. Все грани икосаэдра - равнобедренные треугольники.
  2. В каждой вершине многогранника сходится пять граней, и сумма смежных углов вершины составляет 300.
  3. Икосаэдр имеет так же, как и додекаэдр, 15 осей и плоскостей симметрии, проходящих через середины противоположных граней.

Полуправильные многоугольники

Кроме Платоновых тел, в группу выпуклых многогранников входят также Архимедовы тела, которые представляют собой усечённые правильные многогранники. Виды многогранников данной группы обладают следующими свойствами:

  1. Геометрические тела имеют попарно равные грани нескольких типов, например, усечённый тетраэдр имеет так же, как и правильный тетраэдр, 8 граней, но в случае Архимедова тела 4 грани будут треугольной формы и 4 - шестиугольной.
  2. Все углы одной вершины конгруэнтны.

Звёздчатые многогранники

Представители необъёмных видов геометрических тел - звёздчатые многогранники, грани которых пересекаются друг с другом. Они могут быть образованы путём слияния двух правильных трёхмерных тел либо в результате продолжения их граней.

Таким образом, известны такие звёздчатые многогранники, как: звёздчатые формы октаэдра, додекаэдра, икосаэдра, кубооктаэдра, икосододекаэдра.

Любое геометрическое тело состоит из оболочки, т. е. внешней поверхности, и какого-либо материала, его наполняющего (рис. 42). Каждое геометрическое тело имеет свою форму, кото­рая различается по составу, структуре и размерам.

Состав формы геометрического тела - перечень отсеков по­верхностей, составляющих его (табл. 4). Так, форма прямоуголь­ного параллелепипеда состоит из шести отсеков, поверхностей (граней): две из них являются основаниями параллелепипеда, а остальные четыре отсека образуют замкнутую выпуклую лома­ную поверхность, называемую боковой поверхностью.

Рис 42. Геометрическое тело: 1 - оболочка; 2 - отсеки поверхностей, образующих оболочку тела

Структура формы геометрического тела - характеристика формы, которая показывает взаимосвязь и расположение отсеков поверхностей относительно друг друга (см. рис. 44).

Эти характеристики взаимосвязаны и в наибольшей степени определяют форму геометрического тела и любого другого объ­екта.

По форме простые геометрические тела делятся на много­гранники и тела вращения.

Плоскость является частным случаем поверхности.

Многогранники - геометрические тела, оболочка которых об­разована отсеками плоскостей (рис. 43, а).

Грани - отсеки плоскостей, которые составляют поверхность (оболочку) многогранника; ребра - отрезки прямых, по которым пересекаются грани; вершины - концы ребер.

Тела вращения - геометрические тела (рис. 43, б), оболочка которых представляет собой поверхность вращения (например, шар) либо состоит из отсека поверхности вращения и одного (двух) отсека плоскостей (например, конус, цилиндр и т. п.).

Рис. 43. Многогранники (а) и тела вращения (б): 1 - оболочка геометрического тела;
2 - отсеки плоскостей; 3 - отсеки поверхностей вращения

4. Состав простых геометрических тел




Структура формы влияет на внешний облик геометрического тела. Рассмотрим это на примере прямого и наклонного цилинд­ров (рис. 44), отсеки оснований которых по-разному расположены относительно друг друга.

Рис. 44. Структурные различия в форме цилиндров

Рис. 45. Изменения формы цилиндров



Рис. 46. Четырехугольные пирамиды различной формы

Сравнивая изображения цилиндров на рисунке 45, можно сделать вывод, что изменение положения одного из оснований приводит к изменению формы геометрического тела.

Изменение высоты, ширины, длины, диаметра основания, угла наклона осевой, положение оснований относительно друг друга су­щественно влияет на форму геометрических тел. Например, рас­смотрите четырехугольные пирамиды различной формы (рис. 46).

Рис. 47. Геометрические тела

ТЕОРИЯ МНОГОГРАННИКОВ

Гранные геометрические тела

Гранным геометрическим телом или многогранником называют часть пространства, ограниченную совокупностью конечного числа плоских многоугольников, соединенных таким образом, что каждая сторона любого многоугольника является стороной другого одного многоугольника (называемого смежным), причем вокруг каждой вершины существует один цикл многоугольников. Упрощая вышеизложенное определение, получаем определение многогранника, знакомое из школьного учебника.

Многогранник - геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями. Стороны граней называются ребрами многогранника, а концы ребер - вершинами многогранника.

Из истории

Греческая математика, в которой впервые появилась теория многогранников, развивалась под большим влиянием знаменитого мыслителя Платона.

Платон (427–347 до н.э.) – великий древнегреческий философ, основатель Академии и родоначальник традиции платонизма. Одним из существенных черт его учения является рассмотрение идеальных объектов - абстракций. Математика, взяв на вооружение идеи Платона, со времен Евклида изучает именно абстрактные, идеальные объекты. Однако и сам Платон, и многие древние математики вкладывали в термин идеальный не только смысл абстрактный, но и смысл наилучший. В соответствии с традицией, идущей от древних математиков, среди всех многогранников лучшие те, которые имеют своими гранями правильные многоугольники.

Многогранники можно классифицировать по нескольким признакам: например, по числу граней различают четырехгранники, пятигранники и т. д.

Различают правильные и полуправильные многогранники. Правильными называют такие многогранники, у которых все грани - правильные равные многоугольники и все углы при вершинах равны. Если гранями многогранника являются различные правильные многоугольники, то получается многогранник, который называется полуправильным (равноугольно полуправильным). Полуправильным многогранником называется выпуклый многогранник, гранями которого являются правильные многоугольники (возможно, и с разным числом сторон), и все многогранные углы равны.

Кроме правильных и полуправильных многогранников красивые формы имеют так называемые правильные звездчатые многогранники. Они получаются из правильных многогранников продолжением граней или ребер аналогично тому, как правильные звездчатые многоугольники получаются продолжением сторон правильных многоугольников.

Из множества многогранников выделим наиболее известные: призму и пирамиду (рис. 1).

Призмой называют многогранник, у которого две одинаковые взаимно параллельные грани - основания, а остальные - боковые грани – параллелограммы.

Пирамида представляет собой многогранник, у которого одна грань - произвольный многоугольник - принимается за основание, а остальные грани (боковые) - треугольники с общей вершиной, называемой вершиной пирамиды.

На рис. 2 представлены несколько призм и пирамид. Пирамида, основание которой имеет форму треугольника, называется треугольной пирамидой. Так, можно говорить о квадратных, пятиугольных и т.д. пирамидах рис. 2, а и 2, б . Основанием треугольной пирамиды может служить любая грань.

На рис. 2, в, 2, г и 2, д приведены примеры некоторого класса многогранников, вершины которых можно разделить на два множества из одинакового числа точек; точки каждого из этих множеств являются вершинами р-угольника, причем плоскости обоих p-угольников параллельны. Если эти два р-угольника (основания) конгруэнтны и расположены так, что вершины одного р-угольника соединены с вершинами другого р-угольника параллельными прямолинейными отрезками, то такой многогранник называется р-угольной призмой. Примерами двух р-угольных призм могут служить треугольная призма (р = 3) на рис. 2, в и пятиугольная призма (р = 5) на рис. 2, г . Если же основания расположены так, что вершины одного р-угольника соединены с вершинами другого р-угольника зигзагообразной ломаной, состоящей из 2р прямолинейных отрезков, как на рис. 2, д , то такой многогранник называется р-угольной антипризмой.

Кроме двух оснований, у р-угольной призмы имеются р граней - параллелограммов. Если параллелограммы имеют форму прямоугольников, то призма называется прямой. У такой призмы ребра боковых граней перпендикулярны основанию. Призму, у которой основания не параллельны, называют усеченной.

2. Правильные многогранники. Выпуклый многогранник называется правильным, если он удовлетворяет следующим двум условиям:

Все его грани - конгруэнтные правильные многоугольники;

К каждой вершине примыкает одно и то же число граней.

Если все грани правильного многогранника правильные многоугольники, то в правильных многогранниках все плоские, многогранные и двугранные углы равны.

Если все грани - правильные р-угольники и q из них примыкают к каждой вершине, то такой правильный многогранник обозначается {p, q}. Первое число в скобках указывает, сколько сторон у каждой грани, второе - число граней, примыкающих к каждой вершине. Это обозначение было предложено Л. Шлефли (1814-1895), швейцарским математиком, которому принадлежит немало изящных результатов в геометрии и математическом анализе. Существуют невыпуклые многогранники, у которых грани пересекаются и которые называются "правильными звездчатыми многогранниками". В геометрии условно под правильными многогранниками понимают исключительно выпуклые правильные многогранники

Правильные многогранники иногда называют Платоновыми телами, поскольку они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном.

Существует 5 видов правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр, икосаэдр.

ТЕТРАЭДР – правильный многогранник, поверхность которого состоит из четырех правильных треугольников.

ГЕКСАЭДР (КУБ) – правильный многогранник, поверхность которого состоит из шести правильных четырехугольников (квадратов

ОКТАЭДР – правильный многогранник, поверхность которого состоит из восьми правильных треугольников.

ДОДЕКАЭДР – правильный многогранник, поверхность которого состоит из двенадцати правильных пятиугольников.

ИКОСАЭДР – правильный многогранник, поверхность которого состоит из двадцати правильных треугольников.

Названия этих многогранников пришли из Древней Греции, и в них указывается число граней:

«эдра» - грань;

«тетра» - 4;

«гекса» - 6;

«окта» - 8;

«икоса» - 20;

«додека» - 12.

На рис. 3 изображены правильные многогранники

Из истории

Платон считал, что мир строится из четырёх «стихий» - огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр – как самый обтекаемый – воду; куб – самая устойчивая из фигур – землю, а октаэдр – воздух. В наше время эту систему можно сравнить с четырьмя состояниями вещества - твёрдым, жидким, газообразным и пламенным. Пятый многогранник – додекаэдр символизировал весь мир и почитался главнейшим. Это была одна из первых попыток ввести в науку идею систематизации.

Древние греки рассматривали додекаэдр как форму Вселенной. Ими исследовались также и многие геометрические свойства платоновых тел; с плодами их изысканий можно ознакомиться по 13-й книге Начал Евклида.

Изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр и додекаэдр среди кристаллических форм не встречаются, но их можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий.

Свойства правильных многогранников . Вершины любого правильного многогранника лежат на сфере (что вряд ли вызовет удивление, если вспомнить, что вершины любого правильного многоугольника лежат на окружности). Помимо этой сферы, называемой "описанной сферой", имеются еще две важные сферы. Одна из них, "срединная сфера", проходит через середины всех ребер, а другая, "вписанная сфера", касается всех граней в их центрах. Все три сферы имеют общий центр, который называется центром многогранника.

Число правильных многогранников . Естественно спросить, существуют ли кроме платоновых тел другие правильные многогранники.

Платоновы тела - трехмерный аналог плоских правильных многоугольников. Однако между двумерным и трехмерным случаями есть важное отличие: существует бесконечно много различных правильных многоугольников, но лишь пять различных правильных многогранников. Доказательство этого факта известно уже более двух тысяч лет; этим доказательством и изучением пяти правильных тел завершаются Начала Евклида

Как показывают следующие простые соображения, ответ должен быть отрицательным. Пусть {p, q} - произвольный правильный многогранник. Так как его гранями служат правильные р-угольники, их внутренние углы, как нетрудно показать, равны (180 - 360/р) или 180 (1 - 2/р) градусам. Так как многогранник {p, q} выпуклый, сумма всех внутренних углов по граням, примыкающим к любой из его вершин, должна быть меньше 360 градусов. Но к каждой вершине примыкают q граней, поэтому должно выполняться неравенство.

где символ < означает "меньше чем". После несложных алгебраических преобразований полученное неравенство приводится к виду

Нетрудно видеть, что p и q должны быть больше 2. Подставляя в (1) р = 3, мы обнаруживаем, что единственными допустимыми значениями q в этом случае являются 3, 4 и 5, т.е. получаем многогранники {3, 3}, {3, 4} и {3, 5}. При р = 4 единственным допустимым значением q является 3, т.е. многогранник {4, 3}, при р = 5 неравенству (1) также удовлетворяет только q = 3, т.е. многогранник {5, 3}. При p > 5 допустимых значений q не существует. Следовательно, других правильных многогранников, кроме тел Платона, не существует.

3. Полуправильные многогранники. Выше мы рассмотрели правильные многогранники, т.е. такие выпуклые многогранники, гранями которых являются равные правильные многоугольники, и в каждой вершине которых сходится одинаковое число граней. Если в этом определении допустить, чтобы гранями многогранника могли быть различные правильные многоугольники, то получим многогранники, которые называются полуправильными (равноугольно полуправильными).

Полуправильным многогранником называется выпуклый многогранник, гранями которого являются правильные многоугольники (возможно, и с разным числом сторон), и все многогранные углы равны.

К полуправильным многогранникам относятся правильные n-угольные призмы, все ребра которых равны. Например, правильная пятиугольная призма на рисунке 4, а имеет своими гранями два правильных пятиугольника - основания призмы и пять квадратов, образующих боковую поверхность призмы. К полуправильным многогранникам относятся и так называемые антипризмы. На рисунке 4, б мы видим пятиугольную антипризму, полученную из пятиугольной призмы поворотом одного из оснований относительно другого на угол 36. Каждая вершина верхнего и нижнего оснований соединена с двумя ближайшими вершинами другого основания.

а б в

Кроме этих двух бесконечных серий полуправильных многогранников имеется еще 13 полуправильных многогранников которые впервые открыл и описал Архимед - это тела Архимеда.

Самые простые из них получаются из правильных многогранников операцией "усечения", состоящей в отсечении плоскостями углов многогранника. Если срезать углы тетраэдра плоскостями, каждая из которых отсекает третью часть его ребер, выходящих из одной вершины, то получим усеченный тетраэдр, имеющий восемь граней (рис. 4, в ). Из них четыре - правильные шестиугольники и четыре - правильные треугольники. В каждой вершине этого многогранника сходятся три грани.

Если указанным образом срезать вершины октаэдра и икосаэдра, то получим соответственно усеченный октаэдр (рис. 5, а) и усеченный икосаэдр (рис. 5, б). Обратите внимание на то, что поверхность футбольного мяча изготавливают в форме поверхности усеченного икосаэдра. Из куба и додекаэдра также можно получить усеченный куб (рис. 5,в) и усеченный додекаэдр (рис. 5, г).

а б в г

Мы рассмотрели 4 из 13 описанных Архимедом полуправильных многогранников. Оставшиеся - многогранники более сложного типа.

Из истории

Весьма оригинальна космологическая гипотеза Кеплера, в которой он попытался связать некоторые свойства Солнечной системы со свойствами правильных многогранников. Кеплер предположил, что расстояния между шестью известными тогда планетам выражаются через размеры пяти правильных выпуклых многогранников (Платоновых тел). Между каждой парой небесных сфер, по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из Платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы - додекаэдр.

Серьезный шаг в науке о многогранниках был сделан в XVIII веке Леонардом Эйлером (1707-1783), который без преувеличения «поверил алгеброй гармонию». Теорема Эйлера о соотношении между числом вершин, ребер и граней выпуклого многогранника, доказательство которой Эйлер опубликовал в 1758 г. в «Записках Петербургской академии наук», окончательно навела математический порядок в многообразном мире многогранников.

Вершины + Грани - Рёбра = 2.

Элементы симметрии правильных многогранников

Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие - в виде вирусов, простейших микроорганизмов

Звездчатые многогранники

Звездчатые многогранники получаются из правильных многогранников продолжением граней или ребер аналогично тому, как правильные звездчатые многоугольники получаются продолжением сторон правильных многоугольников.

Первые два правильных звездчатых многогранника были открыты И. Кеплером (1571-1630), а два других почти 200 лет спустя построил французский математик и механик Л. Пуансо (1777-1859). Именно поэтому правильные звездчатые многогранники называются телами Кеплера-Пуансо.

В работе "О многоугольниках и многогранниках" (1810) Пуансо описал четыре правильных звездчатых многогранника, но вопрос о существовании других таких многогранников оставался открытым. Ответ на него был дан год спустя, в 1811 году, французским математиком О. Коши (1789-1857). В работе "Исследование о многогранниках" он доказал, что других правильных звездчатых многогранников не существует.

Рассмотрим вопрос о том, из каких правильных многогранников можно получить правильные звездчатые многогранники. Из тетраэдра, куба и октаэдра правильные звездчатые многогранники не получаются. Возьмем додекаэдр. Продолжение его ребер приводит к замене каждой грани звездчатым правильным пятиугольником (рис. 30,а), и в результате возникает многогранник, который называется малым звездчатым додекаэдром (рис. 30,б).

При продолжении граней додекаэдра возникают две возможности. Во-первых, если рассматривать правильные пятиугольники, то получится так называемый большой додекаэдр (рис. 31). Если же, во-вторых, в качестве граней рассматривать звездчатые пятиугольники, то получается большой звездчатый додекаэдр (рис. 32).

Икосаэдр имеет одну звездчатую форму. При продолжении граней правильного икосаэдра получается большой икосаэдр (рис. 33).

Таким образом, существуют 4 типа правильных звездчатых многогранников.

Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений.

Многие формы звездчатых многогранников подсказывает сама природа. Снежинки - это звездчатые многогранники (рис 34). С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок.


Похожая информация.