Растворение растворимость веществ в воде. Водные растворы

13.1. Растворимость веществ в воде

Раствор – это гомогенная система, состоящая из двух или более веществ, содержание которых можно изменять в определенных пределах без нарушения однородности.

Водные растворы состоят из воды (растворителя) и растворенного вещества. Состояние веществ в водном растворе при необходимости обозначается нижним индексом (р), например, KNO 3 в растворе – KNO 3(p) .

Растворы, которые содержат малое количество растворенного вещества, часто называют разбавленными, а растворы с высоким содержанием растворенного вещества – концентрированными. Раствор, в котором возможно дальнейшее растворение вещества, называется ненасыщенным, а раствор, в котором вещество перестает растворяться при данных условиях, – насыщенным. Последний раствор всегда находится в контакте (в гетерогенном равновесии) с нерастворившимся веществом (один кристалл или более).

В особых условиях, например при осторожном (без перемешивания) охлаждении горячего ненасыщенного раствора твердого вещества, может образоваться пересыщенный раствор. При введении кристалла вещества такой раствор разделяется на насыщенный раствор и осадок вещества.

В соответствии с химической теорией растворов Д. И. Менделеева растворение вещества в воде сопровождается, во-первых, разрушением химических связей между молекулами (межмолекулярные связи в ковалентных веществах) или между ионами (в ионных веществах), и, таким образом, частицы вещества смешиваются с водой (в которой также разрушается часть водородных связей между молекулами). Разрыв химических связей совершается за счет тепловой энергии движения молекул воды, при этом происходит затрата энергии в форме теплоты.

Во-вторых, попав в воду, частицы (молекулы или ионы) вещества подвергаются гидратации. В результате образуются гидраты – соединения неопределенного состава между частицами вещества и молекулами воды (внутренний состав самих частиц вещества при растворении не изменяется). Такой процесс сопровождается выделением энергии в форме теплоты за счет образования новых химических связей в гидратах.

В целом раствор либо охлаждается (если затрата теплоты превосходит ее выделение), либо нагревается (в противном случае); иногда – при равенстве затраты теплоты и ее выделения – температура раствора остается неизменной.

Многие гидраты оказываются настолько устойчивыми, что не разрушаются и при полном выпаривании раствора. Так, известны твердые кристаллогидраты солей CuSO 4 5Н 2 O, Na 2 CO 3 10Н 2 O, KAl(SO 4) 2 12Н 2 O и др.

Содержание вещества в насыщенном растворе при Т = const количественно характеризует растворимость этого вещества. Обычно растворимость выражается массой растворенного вещества, приходящейся на 100 г воды, например 65,2 г КBr/100 г Н 2 O при 20 °C. Следовательно, если 70 г твердого бромида калия ввести в 100 г воды при 20 °C, то 65,2 г соли перейдет в раствор (который будет насыщенным), а 4,8 г твердого КBr (избыток) останется на дне стакана.

Следует запомнить, что содержание растворенного вещества в насыщенном растворе равно , в ненасыщенном растворе меньше и в пересыщенном растворе больше его растворимости при данной температуре. Так, раствор, приготовленный при 20 °C из 100 г воды и сульфата натрия Na 2 SO 4 (растворимость 19,2 г/100 г Н 2 O), при содержании

15,7 г соли – ненасыщенный;

19.2 г соли – насыщенный;

2O.3 г соли – пересыщенный.

Растворимость твердых веществ (табл. 14) обычно увеличивается с ростом температуры (КBr, NaCl), и лишь для некоторых веществ (CaSO 4 , Li 2 CO 3) наблюдается обратное.

Растворимость газов при повышении температуры падает, а при повышении давления растет; например, при давлении 1 атм растворимость аммиака составляет 52,6 (20 °C) и 15,4 г/100 г Н 2 O (80 °C), а при 20 °C и 9 атм она равна 93,5 г/100 г Н 2 O.

В соответствии со значениями растворимости различают вещества:

хорошо растворимые, масса которых в насыщенном растворе соизмерима с массой воды (например, КBr – при 20 °C растворимость 65,2 г/100 г Н 2 O; 4,6М раствор), они образуют насыщенные растворы с молярностью более чем 0,1М;

малорастворимые, масса которых в насыщенном растворе значительно меньше массы воды (например, CaSO 4 – при 20 °C растворимость 0,206 г/100 г Н 2 O; 0,015М раствор), они образуют насыщенные растворы с молярностью 0,1–0,001М;

практически нерастворимые, масса которых в насыщенном растворе пренебрежимо мала по сравнению с массой растворителя (например, AgCl – при 20 °C растворимость 0,00019 г на 100 г Н 2 O; 0,0000134М раствор), они образуют насыщенные растворы с молярностью менее чем 0,001М.

По справочным данным составлена таблица растворимости распространенных кислот, оснований и солей (табл. 15), в которой указан тип растворимости, отмечены вещества, не известные науке (не полученные) или полностью разлагающиеся водой.

Условные обозначения, используемые в таблице:

«р» – хорошо растворимое вещество

«м» – малорастворимое вещество

«н» – практически нерастворимое вещество

«-» – вещество не получено (не существует)

» – вещество смешивается с водой неограниченно



Примечание. Данная таблица отвечает приготовлению насыщенного раствора при комнатной температуре путем внесения вещества (в соответствующем агрегатном состоянии) в воду. Следует учесть, что получение осадков малорастворимых веществ с помощью реакций ионного обмена возможно не всегда (подробнее см. 13.4).

Раствор - жидкая лекарственная форма, полученная путем растворения одного или нескольких лекарственных веществ, предназначенная для инъекционного, внутреннего или наружного применения. В физико-химическом отношении растворы не являются однородной группой, поскольку они охватывают жидкие дисперсные системы с разной степенью дисперсности: 1) истинные растворы низкомолекулярных соединений; 2) растворы высокомолекулярных соединений и 3) коллоидные растворы. За всеми этими категориями дисперсных систем издавна закрепилось одно общее наименование растворы (например, раствор натрия хлорида, раствор протаргола, раствор желатина), хотя каждая система имеет свои особенности.

Растворы представляют самую обширную группу среди жидких лекарственных форм. В биофармацевтическом отношении растворы обладают рядом достоинств. Основные из них: а) лекарственные вещества из растворов быстрее всасываются и скорее оказывают резорбтивное действие; б) исключается раздражающее действие на слизистые оболочки, которое имеет место при приеме порошков (например, бромидов и йодидов калия, аммония и др.); в) удобны для приема; г) быстро изготавливаются. Однако растворы как лекарственные формы не лишены некоторых недостатков. Так, не все категории растворов отличаются устойчивостью при хранении, в форме раствора более отчетливо ощущается неприятный вкус некоторых лекарственных веществ.

Истинные растворы охватывают все категории дисперсных систем: молекулярно-дисперсные и ионно-дисперсные системы. В молекулярно-дисперсных системах размер частиц порядка 1 нм. К ним относятся растворы неэлектролитов (например, сахар, спирт). Растворенное вещество распадается на отдельные кинетические самостоятельные молекулы. В ионнодисперсных системах размер частиц выражается числами уже порядка 0,1 нм. К ним относятся растворы электролитов (например, натрия хлорид, магния сульфат). Растворенное вещество находится в виде отдельных гидратированных ионов и молекул в некоторых равновесных количествах.

Истинные растворы являются однофазными системами, они гомогенны даже при рассматривании их в электронном микроскопе, и их компоненты не могут быть разделены ни фильтрованием, ни каким-либо другим способом. Истинные растворы хорошо диффундируют, сохраняют гомогенность длительное время, если только в них не начинают происходить вторичные химические процессы (гидролиз, окисление и т. п.) или они не подвергаются микробиологическому загрязнению. Эта устойчивость очень важна в практическом отношении, поскольку позволяет приготавливать в запас раствор-концентраты для бюреточных установок и внутри аптечные заготовки.

Важнейшей особенностью процесса растворения является его самопроизвольность. Достаточно простого соприкосновения растворяемого вещества с растворителем, чтобы через некоторое время образовалась однородная система-раствор.

При выборе растворителя приходится пользоваться преимущественно эмпирическими правилами, поскольку предложенные теории растворимости не всегда могут объяснить сложные (как правило) соотношения между составом и свойствами растворов. Чаще руководствуются старинным правилом: «подобное растворяется в подобном» («Similia similibus solventur»). Практически это означает, что для растворения какого-либо вещества наиболее пригодными являются те растворители, которые структурно сходны и, следовательно, обладают близкими физико-химическими свойствами.

С современной точки зрения, это эмпирическое правило в значительной степени может быть объяснено наличием (или отсутствием) у растворителя и растворяемого вещества полярных групп. Полярные группы - это активные функциональные группы, присутствующие в химических соединениях, способные образовывать соответствующие связи между контактируемыми веществами. Полярными функциональными группами являются, например, группы ОН, СО, СНО, СООН, NH2. Следовательно, жидкости, имеющие указанные группы (вода, этанол, глицерин и т. п.), хорошо смешиваются, т. е. взаимно растворяются. К неполярным растворителям относятся жидкости, не имеющие активных функциональных групп, например углеводороды (вазелиновое масло), галоидоалкилы (хлороформ, СНСl3 и др.).

Растворимость жидкостей в жидкостях колеблется в широких пределах. Наряду с жидкостями, неограниченно растворяющимися друг в друге (например, этанол и вода), имеются жидкости, ограниченно растворимые друг в друге (например, эфир и вода - малополярное и полярное вещества), и жидкости, практически нерастворимые друг в друге (например, растительные масла и вода, этанол, глицерин - неполярные и полярные вещества).

Наличием полярных групп только в некотором приближении объясняется растворимость того или иного вещества в том или ином растворителе. Это объяснение не всегда приемлемо, особенно в отношении органических соединений: в этих случаях на растворимость вещества оказывают влияние различные конкурирующие функциональные группы, их число, молекулярная масса, размер и форма молекулы и другие факторы.

Лекарственные вещества обладают разной способностью к растворению в воде и других растворителях. Сведения о растворимости приводятся в частных статьях ГФХ и в специальных таблицах которые должны иметься в каждой аптеке. В этих таблицах принят обычный массообъемный способ обозначения растворимости, т. е. обозначение, например, 1:20 говорит о том, что в 20 мл растворителя может раствориться не более 1 г данного вещества. Часто растворимость обозначается процентной концентрацией вещества (для нашего примера - 5%).

Растворимость данного лекарственного вещества в воде (и другом растворителе) зависит от температуры. Для подавляющего большинства твердых веществ растворимость увеличивается с повышением температуры. Бывают, однако, исключения (например, соли кальция).

Некоторые лекарственные вещества растворяются медленно (хотя и растворяются в значительных концентрациях). С целью ускорения растворения таких веществ прибегают к нагреванию, предварительному измельчению растворяемого вещества, перемешиванию смеси.

Водные растворы

Растворы твердых лекарственных веществ

Процесс растворения твердого кристаллического вещества в воде состоит из двух одновременно протекающих процессов: сольватации (в случае воды - гидратации) частиц и разрушения кристаллической решетки. На рис. 9.1 показан процесс растворения натрия хлорида в воде. Ионы натрия Na+ и хлорида Сl-, находящиеся на поверхности кристаллов NaCl, гидратируются дипольными молекулами воды: к положительному иону натрия диполи воды обращены своими отрицательными полюсами, а к отрицательным ионам хлора - положительными. Между ионами и полярными молекулами воды возникает ионно-дипольная связь, в результате чего диполи проникают между ионами Na+ и Cl- в твердой фазе, отрывая их от кристалла. Совершенно очевидно, что эффективность растворения выше, когда силы сцепления между молекулами растворителя и частицами растворяемого вещества больше сил взаимного притяжения этих частиц между собой. Молекулы воды по сравнению с молекулами других растворителей обладают очень выраженной полярностью. Именно этим свойством обусловливаются высокая ионизирующая способность воды и ее разрушительное действие на кристаллические решетки многих полярных соединений.

При растворении веществ наблюдается поглощение или выделение теплоты. Поглощение теплоты указывает на затрату энергии. Объясняется это тем, что на перевод вещества из твердого состояния в раствор, т. е. на разрушение кристаллической решетки, обязательно расходуется энергия, которая отнимается у растворителя, в результате чего происходит охлаждение раствора. Величина охлаждения раствора тем выше, чем прочнее кристаллическая решетка, т. е. чем больше энергии требуется на ее разрушение. Выделение тепла при растворении веществ всегда указывает на активно протекающую сольватацию, т. е. образование соединений между растворимым веществом и растворителем.

С заметным поглощением теплоты растворяются, например, калия нитрат, калий йодид, натрия хлорид, с малозаметным - натрия бромид. С выделением теплоты растворяются серебра нитрат, гидроксид кальция, кальция хлорид и др.

Растворение подавляющего большинства твердых веществ, как уже указывалось, носит самопроизвольный характер, особенно в тех случаях, когда в прописываемых растворах концентрация лекарственных веществ далека до предела, например:

9.1. Rp.: Kalii iodidi 10,0
Aquae destillatae 200 ml
MDS. По 1 столовой ложке 2-3 раза в день

При растворимости калия йодида 1:0,75 (т. е. для растворения 1 г соли требуется меньше 1 мл воды) в системе имеется огромный запас растворимости. Однако во многих случаях по разным причинам процесс растворения нуждается в активации и применении особых технологических приемов.

Растворы веществ, обладающих хорошей, но медленной растворимостью. Медленно растворяются в воде амидопирин, кофеин, меди сульфат и др.

9.2. Rp.: Solutionis Amidopyrini 1% 200 ml
Sirupi simplicis 10 ml
MDS. По 1 десертной ложке через 2-3 ч

Растворимость амидопирина 1:20 (5%). Однако поверхность его кристаллов плохо смачивается водой, что задерживает растворение. Смачиваемость можно улучшить, а следовательно, и ускорить растворение амидопирина применением горячей воды.

Плохой смачиваемостью обладают также квасцы, кислота борная, натрия тетраборат. Их также растворяют в горячей воде. Кристаллы солей тяжелых металлов, помимо плохой смачиваемости, имеют прочные кристаллические решетки. В этом случае приходится использовать все возможные приемы: горячую воду, растирание в ступке с растворителем.

9.3. Rp.: Cupri sulfatis 0,5
Aquae destillatae 50 ml
MDS. По 1 столовой ложке через 10 мин до наступления рвоты

Растворимость сульфата меди в воде хорошая (1:3), однако вследствие указанных выше причин растворение ускоряют растиранием в ступке с горячей водой.

9.4. Rp.: Solutionis Hydrargyri dichloridi 1:2000-200 ml
DS. Для промывания

Растворимость ртути дихлорида в воде 1:18,5. Однако в связи с медленной растворимостью сулемы в холодной воде следует пользоваться горячей водой. Другой особенностью раствора ртути дихлорида является кислая реакция, которую он приобретает вследствие гидролиза. Поэтому после растворения сулемы добавляют равное количество натрия хлорида, который приостанавливает гидролиз, и раствор приобретает нейтральную реакцию и устойчивость. Еще одна особенность этого раствора - осторожность приготовления и оформления перед его отпуском. Раствор подкрашивают эозином (с указанием в сигнатуре) и отпускают в опечатанном виде с предупредительными этикетками на флаконах «Яд», «Обращаться с осторожностью», «Раствор сулемы 0,5%» и этикеткой с изображением скрещенных костей и черепа. Растворы сулемы целесообразнее приготавливать из таблеток, выпускаемых промышленностью по 0,5 и 1,0, содержащих равное количество хлорида натрия и подкрашенных 1% раствором эозина.

9.5. Rp.: Solutionis Phenoli puri 2% 200 ml
DS. Для промывания

Кристаллический фенол очень медленно растворяется в воде. Для удобства изготовления его водных растворов исходят из жидкого фенола (Phenolum purum liquefactum). Последний получается путем добавления к 100 г фенола расплавленного на водяной бане 10 мл воды. Бесцветная маслянистая жидкость, содержащая около 90% фенола, не смешивается с жирными маслами. Исходя из этой цифры, отмеривают 4,4 мл жидкого фенола и доводят объем раствора до 200 мл. Отпускают с этикетками «Яд», «Обращаться с осторожностью», «Карболовая кислота», если растворы фенола имеют концентрацию свыше 5%.

Растворы веществ, требующие добавления ингредиентов, способствующих растворению и стабильности растворов. Эта группа растворов довольно обширна, и изготовление каждого раствора имеет свои особенности.

Так, например, водные растворы йода в лечебных концентрациях (от 1 % и выше) можно получить в присутствии калия йодида за счет образования легкорастворимых комплексных соединений йода с йодидами щелочных металлов (образуются перйодиды): I2 + KI > КI3

9.6. Rp.: Iodi 1,0
Kalii iodidi 2,0
Aquae destiilatae ad 100 ml
MDS. Раствор Люголя для наружного применения

Изготовление сводится к получению концентрированного раствора калия йодида: достаточно взять 1,5-2 мл воды (растворимость 1:0,75) и добавить йод, который растворится почти мгновенно. По этому же принципу изготавливаются и раствор ртути дийодида, растворимость которого 1:25 000, а в присутствии калия йодида образуется легкорастворимый комплекс K2HgI4.

Очень мало растворимый в воде препарат мышьяка - осарсол - переводится в раствор с помощью натрия гидрокарбоната. Протекает обменная реакция и образуется водорастворимая натриевая соль осарсола.

9.7. Rp.: Solutionis Osarsoli 5% 200 ml
Natrii hydrocarbonatis 4,0
MDS. Для влагалищного обтирания

Приготавливают раствор натрия гидрокарбоната, в котором растворяют осарсол. Лекарственная форма предназначена для наружного применения, оформляют ее, как содержащую ядовитое вещество.

Своеобразно и приготовление растворов темисала, представляющего собой сочетание эквимолекулярных количеств натриевых солей салициловой кислоты и теобромина. Натрия салицилат повышает растворимость теобромина, который практически нерастворим в воде и вытесняется из солей даже слабой угольной кислотой. По этой причине растворителем должна быть только свежепрокипяченная, лишенная углекислого газа, дистиллированная вода. В противном случае часть теобромина выпадает в осадок, и раствор будет испорчен. Темисал образует прозрачные сильно щелочные растворы, хорошо поглощающие углекислый газ. По этой причине флакон с изготовленным раствором немедленно плотно закупоривают. В процессе применения раствор может мутнеть и образовываться небольшой осадок. Поэтому обязательна этикетка «Перед употреблением взбалтывать», а больной должен быть дополнительно предупрежден об этой особенности применения.

Растворы жидких лекарственных веществ

В форме водных растворов обычно применяются жидкие лекарственные вещества, обладающие полной взаимной растворимостью, но могут быть прописаны и вещества с ограниченной растворимостью в воде. В случае растворения в воде полярных соединений происходит гидратация полярных молекул и диссоциация этих молекул в растворе на свободные гидратированные ионы (см. рис. 9.1). Например, так ведут себя молекулы НСl, диссоциирующие в водных растворах на свободные гидратированные ионы Н+ и Сl-.

Растворы кислот. При использовании в аптечной практике неорганических и сильных органических кислот необходимо помнить, что при разведении крепких кислот последние вводят в растворитель понемногу, тонкой струей, помешивая, для предупреждения выброса кипящей смеси и ожога. При приготовлении водных растворов кислот во избежание ошибок в толковании рецептов необходимо строго руководствоваться в каждом отдельном случае указаниями ГФХ, например:

9.8. Rp.: Acidi hydrochlorici 15 ml
DS. Принимать по 10-15 капель на 1/4 стакана воды 2 раза в день во время еды

В ГФХ (ст. 20) говорится, что если прописана хлористоводородная кислота и не указана ее концентрация, то всегда имеется в виду разведенная кислота (Acidurn hydrochloricum dilutum), содержащая 8,2-8,4% хлористого водорода. Так следует поступить и при изготовлении раствора по рецепту 9.8.

Однако хлористоводородная кислота как таковая прописывается редко, поскольку даже при содержании в ней 8% хлористого водорода она летуча. Поэтому обычно прописывают растворы разведенной кислоты.

9.9. Rp.: Solutionis Acidi hydrochlorici 2% 200 ml
DS. По столовой ложке 2 раза в день во время еды

В ГФХ говорится, что в таких случаях фармакопейная разведенная кислота принимается за единицу (стандартный препарат) и ее берется столько, сколько указано в рецепте. В данном случае требуется 4 мл препарата и 196 мл воды. Однако, учитывая летучесть хлористого водорода, и для повышения точности приготавливаемых растворов рекомендуется пользоваться внутриаптечной заготовкой: Sol. Acidi hydrochlorici diluti 1:10. В этом случае берется 40 мл раствора разведенной хлористоводородной кислоты и 160 мл дистиллированной воды.

Из сильных органических кислот могут назначаться 5-8% растворы уксусной кислоты для наружного применения (обтирания). Здесь используется другое правило - процентное содержание уксусной кислоты, указанное в рецепте, должно быть точно воспроизведено в растворе. Исходная кислота может быть разведенная (30%) или концентрированная (98%). При приготовлении, например, 5% раствора уксусной кислоты можно исходить из обоих препаратов, но в каждом случае нужно точно рассчитывать их количества, чтобы обеспечить требуемое содержание 5% уксусной кислоты. Естественно легче разбавить 30% уксусную кислоту.

Растворы аммиака. Если выписан раствор аммиака без указания концентрации, то всегда имеется в виду фармакопейный препарат, содержащий 10% аммиака (Solutio Ammonii caustici), - нашатырный спирт (ГФХ, ст. 464). Исходя из этого стандартного препарата, отпускают его растворы, разведя его до требуемой по рецепту концентрации аммиака (обычно значительно меньшей 1% для вдыхания при обмороке). При расчете разведения необходимо знать фактическое содержание аммиака в препарате, поскольку оно не всегда стабильно.

Растворы перекиси водорода. Раствор перекиси водорода часто назначается для полосканий. В этом случае нужно иметь в виду, что если будет прописан Solutio Hydrogenii peroxydi без указания концентрации, то в соответствии с указаниями ГФХ (ст. 496) следует отпускать фармакопейный препарат Solutio Hydrogenii peroxydi diluta, содержащий 3% перекиси водорода. Если же будет прописан раствор меньшей концентрации, то указанный фармакопейный препарат нужно соответственно разбавить. В ряде случаев, например для смазывания десен, прописываются растворы перекиси водорода большей, чем 3%, концентрации. В этом случае нужно исходить из пергидроля (Solutio Hyrogenii peroxydi concentrate, ГФХ, ст. 495), содержащего 27,5-31% перекиси водорода.

9.10. Rp.: Solutionis Hydrogenii peroxydi 0,5% 200 mi
DS. Полоскание

9.11. Rp.: Solutionis Hydrogenii peroxydi 6% 50 ml
DS. Для смазывания десен

Так, по рецепту 9.10 смешивают 33,3 мл раствора перекиси водорода (3%) и 166,7 мл воды, а по рецепту 9.11 - 10 мл пергидроля и 40 мл воды, при условии, что в пергидроле содержится 30% перекиси водорода. Если фактическое содержание водорода меньше (что часто бывает), то расчет следует вести по ее фактическому содержанию.

Растворы формалина. Здесь также очень важно правильное толкование рецепта. «Формалин» - это традиционное название фармакопейного препарата «Solutio Formaldehydi» (ГФХ, ст. 489), который должен содержать не менее 36% и не более 40% газообразного альдегида муравьиной кислоты. Формалин может прописываться как таковой (в этом случае просто отмеривают препарат) или в форме раствора (формалин - сильное дезинфицирующее средство).

9.12. Rp.: Solutionis Formalini 50% 50 ml
DS. Для смазывания

В этом случае, согласно указания ГФХ, фармакопейный препарат принимается за единицу и его берется столько, сколько указано в рецепте: 25 мл формалина и 25 мл воды. ГФХ допускает применение формалина с содержанием формальдегида менее 36%, но с внесением соответствующей поправки.

В рецепте может быть прописан раствор с конкретным указанием содержания в нем формальдегида, например:

9.13. Rp.: Solutionis Formaldehydi 5% 200 ml
DS. Для обмывания ног

В этом случае производят расчет, исходя из фактического содержания формальдегида в исходном препарате. Если по анализу препарат содержал точно 40% формальдегида, то следует взять 25 мл раствора формальдегида и 175 мл воды.

Растворы жидкости Бурова. Жидкость Бурова содержит 8% основного ацетата алюминия. Применяется в качестве антисептического средства. Здесь затруднение может вызвать не процесс смешения двух жидкостей (воды и препарата), а толкование требуемых концентраций по рецептам. Следует иметь в виду, что раствор жидкости Бурова одной и той же концентрации может быть прописан по-разному (рецепты 9.14-9.16). Во всех случаях прописан раствор, содержащий 0,8% основного ацетата алюминия, и во всех случаях берется по 10 мл жидкости Бурова.

Растворы твердых и жидких лекарственных веществ (совместно)

Такие растворы в аптечной практике встречаются очень часто и порою бывают достаточно сложными. Во всех случаях вначале изготавливается раствор твердых веществ, в который затем добавляются жидкие лекарственные препараты (настойки, жидкие экстракты, новогаленовы препараты, сиропы и т. п.).

9.17. Rp.: Analgini 1,0
Adonisidi 5 ml
Natrii bromidi 5,0
Aquae destillatae 180 ml
MDS. По 1 столовой ложке 3 раза в день

Вначале приготавливают раствор солей, а затем добавляют новогаленовый препарат адонизид.

В аптечной практике чаще применяются усложненные прописи. Например, по рецепту 9.18 вначале в воде при нагревании растворяют натрия тетраборат, а после остывания - натрия гидрокарбонат, прибавляют последовательно глицерин, воду горькоминдальную и воду мятную. Ароматные жидкости вводятся в последнюю очередь.

9.18. Rp.: Natrii hydrocarbonatis
Natrii tetraboratis aa 1,5
Aquae Amygdaiarum amararum 3 ml
Glycerini 4,0
Aquae Menthae 4 ml
Aquae destillatae 150 ml
MDS. Жидкость для щелочных ингаляций

Неводные растворы

Главной особенностью растворов для наружного применения является широкое использование, помимо воды, других растворителей, таких как этанол, глицерин, реже применяются растительные и минеральные масла, эфир и хлороформ. Естественно, что чем больше используется растворителей, тем большего разнообразия можно ожидать в рецептуре этой группы растворов. Разнообразие рецептуры неводных растворов вызывается еще и тем, что они применяются для самых различных целей, в связи с чем имеют свои специфические наименования: примочки (fomenta); полоскания (gargarismata); смазывания (giturae); клизмы (clysmata); спринцевания (perlotio: P. vaginales, P. urethrales); обмывания (lotiones); жидкость для тампонов (liquor ad tamponis); жидкость для компрессов (liquor ad compressum); жидкость для ингаляций (liquor ad ingalationis).

В техническом отношении неводные растворы можно разделить на две сходные группы по признаку летучести растворителей: растворы в летучих растворителях (этанол, эфир, хлороформ и т. п.) и растворы в нелетучих растворителях (глицерин, жирные масла и т. п.). Этанол (всегда 90%, если в рецепте не оговорена концентрация) отмеривается по объему, все остальные растворители берут по массе. При изготовлении неводных растворов во флаконы, как правило, вначале высыпают растворимые вещества (удобно через воронку с укороченной трубкой), а затем вводят растворитель; флакон должен быть сухой, так как вода не смешивается с органическими растворителями (кроме этанола и глицерина).

Растворы в летучих растворителях

Спиртовые растворы. При изготовлении спиртовых растворов, так же как и водных растворов, принимается во внимание содержание лекарственных веществ от общего объема раствора. Если их количество менее 5%, то этанола берут столько, сколько прописано в рецепте, так как прирост объема раствора в данном случае незначителен и укладывается в нормы отклонения. Если лекарственных веществ 5% и более, то раствор готовят в мерной посуде или рассчитывают количество этанола с учетом коэффициента увеличения объема по этанолу (табл. 9.1). Пропись рецепта 9.19 содержит лекарственные вещества, находящиеся в разном агрегатном состоянии:


В отпускной флакон помещают отвешенные количества всех ингредиентов, добавляют 95,5 мл 90% этанола, плотно закрывают и взбалтывают до получения прозрачного раствора. Все прописанные вещества растворимы в 90% этаноле.

9.20. Rp.: Mentholi 2,0
Chloroformii 6,0
Olei Eucalypti 8,0
Solutionis Iodi spirituosae 10% 4 ml
Spiritus aethylici 50 ml
MDS. По 15 капель на тампон для вдыхания

В 90% этаноле растворяют вначале ментол, затем добавляют последовательно: эвкалиптовое эфирное масло, хлороформ и настойку йодную. В применении КУО не было надобности (твердых веществ 3%).

В качестве растворителей могут назначаться смеси этанола и хлороформа, этанола и эфира и т. п. Например:

9.21. Rp.: Olei Menthae 5,0
Camphorae 2,0
Aetheris aethylici 10,0
Spiritus aethylici 30 ml
MDS. Для натирания висков при мигрени

Количество лекарственных веществ составляет 7%. Проведем расчеты, пользуясь табл. 9.1.


Будет вполне логично, если в этаноле последовательно будут растворены: камфора, мятное эфирное масло и эфир. Растворы в летучих растворителях готовят вдали от огня и не фильтруют. Этанол находится на предметно-количественном учете.

Растворы в нелетучих растворителях

Глицериновые растворы. Глицериновые растворы широко применяются в качестве разных смазываний. Изготовление зависит от того, с какими лекарственными веществами сочетается глицерин. Например, для ускорения растворения натрия тетрабората (рецепт 9.22) применяют глицерин, подогретый до 40-50° С.

9.22. Rp.: Natrii tetraboratis 5,0
Glycerini 30,0
MDS. Для смазывания слизистой оболочки полости рта

Очень часты сочетания йода и калия йодида в глицериновом растворе. К их числу относится раствор Люголя с глицерином (йода - 1 часть, калия йодида - 2 части, глицерина - 94 части, воды - 3 части) и другие прописи.

9.23. Rp.: lodi 0,1
Kalii iodidi 1,0
Glycerini 30,0
MDS. Для тампонов (при вульвовагините)

Растворимость в глицерине: йода 1:200, калия йодида 1:2,5. Калия йодид растворяют в небольшом количестве теплого глицерина, после чего в нем при растирании в ступке растворяют йод. Быстрее и без существенного нарушения прописи можно растворить йод в концентрированном растворе калия йодида (воды 15-20 капель), после чего примешать глицерин.

Масляные растворы. Масляные растворы чаще прописывают для компрессов. Примером может служить раствор салициловой кислоты в персиковом или подсолнечном масле. Салициловую кислоту растворяют в теплом масле.

9.24. Rp.: Acidi salicvlici 2,0
Olei Persicorum 100,0
MDS. Для компрессов (для размягчения кожи)

Тема: Вода и растворы.

План:

  1. Вода в природе. Свойства воды.
  2. Растворы.
  3. Способы выражения состава раствора.
  4. Гидраты и кристаллогидраты.
  5. Растворимость.
  6. Пересыщенные растворы.
  7. Осмос.
  8. Давление паров, растворов.
  9. Замерзание и кипение растворов.
  10. Буферные растворы.

Вода—"весьма распространенное на Земле вещество. Почти три четвёртых поверхности земного шара покрыты водой, образующей океаны, моря, реки и озера. Много воды находится в газообразном состоянии в виде паров в атмосфере; в виде огромных масс снега и льда лежит она круглый год на вершинах высоких гор и в полярных странах. В недрах земли также находится вода, пропитывающая почву и горные породы.

Природная вода не бывает совершенно чистой. Наиболее чистой является дождевая вода, но и она содержит незначительные количества различных примесей, которые захватывает из воздуха.

Количество примесей в пресных водах обычно лежит в пределах от 0,01 до 0,1 % (масс). Морская вода содержит 3,5 % (масс.) растворенных веществ, главную массу которых составляет хлорид натрия (поваренная соль).

Вода, содержащая значительное количество солей кальция и магния, называется жесткой в отличие от мягкой воды, например дождевой. Жесткая вода дает мало пены с мылом, а на стенках котлов образует накипь.

Чтобы освободить природную воду от взвешенных в ней частиц, ее фильтруют сквозь слой пористого вещества, например, угли, обожженной глины и т. п. При фильтровании больших количеств воды пользуются фильтрами из песка и гравия. Фильтры задерживают также большую часть бактерий. Кроме того, для обеззараживания питьевой воды ее хлорируют; для полной стерилизации воды требуется не более 0,7 г хлора на 1 т воды.

Фильтрованием можно удалить из воды только нерастворимые примеси. Растворенные вещества удаляют из нее путем перегонки (дистилляции) или ионного обмена.

Вода имеет очень большое значение в жизни растений, животных и человека. Согласно современным представлениям, само происхождение жизни связывается с морем. Во всяком организме вода представляет собой среду, в которой протекают химические процессы, обеспечивающие жизнедеятельность организма; кроме того, она сама принимает участие в целом ряде биохимических реакций.

Физические свойства воды. Чистая вода представляет собой бесцветную прозрачную жидкость. Плотность воды при переходе из твердого состояния в жидкое не уменьшается, как почти
у всех других веществ, а возрастает. При нагревании воды от 0до 4°С плотность ее также увеличивается. При 4 °С вода имеет максимальную плотность, и лишь при дальнейшем нагревании ее плотность уменьшается.

Большое значение в жизни природы имеет и тот факт, что вода обладает аномально высокой теплоемкостью .

В связи с тем, что при плавлении льда объем, занимаемый водой, уменьшается, давление понижает температуру плавления льда. Это вытекает из принципа Ле Шателье. Таким образом, возрастание давления при О °С вызывает превращение льда в жидкость, а это и означает, что температура плавления льда снижается.

Молекула воды имеет угловое строение; входящие в ее состав ядра образуют равнобедренный треугольник, в основании которого находятся два протона, а в вершине —ядро атома кислорода. Межъядерные расстояния О—Н близки к 0,1 нм, расстояние между ядрами атомов водорода равно примерно 0,15 нм. Из восьми электронов, составляющих внешний электронный слой атома кислорода в молекуле воды две электронные пары образуют ковалентные связи О—Н, а остальные четыре электрона представляют собой две не поделенных электронных пары.

Атом кислорода в молекуле воды находится в состоянии 5р 3 -гибридизации. Поэтому валентный угол НОН (104,3°) близок к тетраэдрическому (109,5°). Электроны, образующие связи О—Н, смещены к более электроотрицательному атому кислорода. В результате атомы водорода приобретают эффективные положительные заряды, так что на этих атомах создаются два положительных полюса. Центры отрицательных зарядов неподеленных электронных пар атома кислорода, находящиеся на гибридных 5р 3 -орбиталях, смещены относительно ядра атома и создают два отрицательных полюса.

Молекулярная масса парообразной воды равна 18 ед. Но молекулярная масса жидкой воды, определяемая путем изучения ее растворов в других растворителях оказывается более, высокой. Это происходит из-за того, что в жидкой воде происходит ассоциация отдельных молекул воды в более сложные агрегаты (кластеры). Такой вывод подтверждается и аномально высокими значениями температур плавления и кипения воды. Ассоциация молекул воды вызвана образованием между ними водородных связей.

По своей структуре вода представляет собой иерархию правильных объемных структур, в основе которых лежит кристаллоподобные образования, состоящие из 57 молекул и взаимодействующие друг с другом за счет свободных водородных связей. Это приводит к появлению структур второго порядка в виде шестигранников, состоящих из 912 молекул воды. Свойства кластеров зависят от того, в каком соотношении выступают на поверхность кислород и водород. Конфигурация элементов воды реагирует на любое внешнее воздействие и примеси, что объясняет чрезвычайно лабильный характер их взаимодействия. В обычной воде совокупность отдельных молекул воды и случайных ассоциатов составляет 60% (деструктурированная вода), а 40% - это кластеры (структурированная вода).

В твердой воде (лед) атом кислорода каждой молекулы участвует в образовании двух водородных связей с соседними молекулами воды. Образование водородных связей приводит к такому расположению молекул воды, при котором они соприкасаются друг с другом своими разноименными полюсами. Молекулы образуют слои, причем каждая из них связана с тремя молекулами, принадлежащими к тому же слою, и с одной — из соседнего слоя. Структура льда принадлежит к наименее плотным структурам, в ней существуют пустоты, размеры которых несколько превышают размеры молекулы.

При плавлении льда его структура разрушается. Но и в жидкой воде сохраняются водородные связи между молекулами: образуются ассоциаты — обломки структур льда, — состоящих из большего или меньшего числа молекул воды. Однако в отличит от льда каждый ассоциат существует очень короткое время: постоянно происходит разрушение одних и образование других агрегатов. В пустотах таких “ледяных” агрегатов могут размещаться одиночные молекулы воды; при этом упаковка молекул воды становится более плотной. Именно поэтому при плавлении льда объем, занимаемый водой, уменьшается, а ее плотность возрастает.

По мере нагревания воды обломков структуры льда в ней становится все меньше, что приводит к дальнейшему повышению плотности воды. В интервале температур от 0 до 4°С этот эффект преобладает над тепловым расширением, так что плотность воды продолжает возрастать. Однако при нагревании выше 4°С преобладает влияние усиления теплового движения молекул и плотность воды уменьшается. Поэтому при 4°С вода обладает максимальной плотностью.

При нагревании воды часть теплоты затрачивается на разрыв водородных связей (энергия разрыва водородной связи в воде составляет примерно 25 кДж/моль). Этим объясняется высокая теплоемкость воды. Водородные связи между молекулами воды полностью разрываются только при переходе воды в пар.

Диаграмма состояния воды (или фазовая диаграмма) представляет собой графическое изображение зависимости между величинами, характеризующими состояние системы, и фазовыми превращениями в системе (переход из твердого состояния в жидкое, из жидкого в газообразной и т. д.). Для однокомпонентных систем обычно используются диаграммы состояния, показывающие зависимость фазовых превращений от температуры и давления; они называются диаграммами состояния в координатах Р—Т.

При температуре, отвечающей этой точке,—критической температуре— величины, характеризующие физические свойства жидкости и пара, становятся одинаковыми, так что различие между жидким и парообразным состоянием исчезает.

Существование критической температуры установил в 1860 г. Д. И. Менделеев, изучая свойства жидкостей. Он показал, что при температурах, лежащих выше критической, вещество не может находиться в жидком состоянии. В 1869 г. Эндрьюс, изучая свойства газов, пришел к аналогичному выводу.

Критические температура и давление для различных веществ различны. Так, для водорода = —239,9 °С, = 1,30 МПа, для хлора =144°С, =7,71 МПа, для воды = 374,2 °С, =22,12 МПа.

Молекулы воды отличаются большой устойчивостью к нагреванию. Однако при температурах выше 1000 °С водяной пар начинает разлагаться на составляющие воду водород и кислород. Процесс разложения вещества в результате его нагревания называется термической диссоциацией. Термическая диссоциация воды протекает с поглощением теплоты. Поэтому, согласно принципу равновесия французского учёного Ле Шателье, чем выше температура, тем в большей степени разлагается вода. Однако даже при 2000 °С степень термической диссоциации воды не превышает 2%, т.е. равновесие между газообразной водой и продуктами ее диссоциации — водородом и кислородом — все еще остается сдвинутым в сторону воды. При охлаждении же ниже 1000 °С равновесие практически полностью сдвигается в этом направлении.
Вода — очень реакционно способное вещество. Оксиды многих металлов и неметаллов соединяются с водой, образуя основания и кислоты; некоторые соли образуют с водой кристаллогидраты; наиболее активные металлы взаимодействуют с водой с выделением водорода.

Вода обладает также каталитической способностью. В отсутствие следов влаги практически не протекают некоторые обычные реакции; например, хлор не взаимодействует с металлами, фтороводород не разъедает стекло, натрий не окисляется в атмосферы воздуха.

Вода способна соединяться с рядом веществ, находящихся при обычных условиях в газообразном состоянии, образуя при этом так: называемые гидраты газов. Примерами могут служить соединения ксенона, хлора и углеводородов, которые выпадают в виде кристаллов при температурах от 0 до 24 °С (обычно при повышенном давлении соответствующего газа). Подобные соединения возникают в результате заполнения молекулами газа (“гостя”) межмолекулярных полостей, имеющихся в структуре воды (“хозяина”); они называются соединениями включения или клатратами.

В клатратных соединениях между молекулами “гостя” и “хозяина” образуются лишь слабые межмолекулярные связи; включенная молекула не может покинуть своего места в полости кристалла преимущественно из-за пространственных затруднений Поэтому клатраты — неустойчивые соединения, которые могут существовать лишь при сравнительно низких температурах.

Клатраты используют для разделения углеводородов и благородных газов. В последнее время образование и разрушение клатратов газов (пропана и некоторых других) успешно применяется для обессоливания воды. Нагнетая в соленую воду при повышенном давлении соответствующий газ, получают льдоподобные кристаллы клатратов, а соли остаются в растворе. Похожую на снег массу кристаллов отделяют от маточного раствора и промывают, Затем при некотором повышении температуры или уменьшении давления клатраты разлагаются, образуя пресную воду и исходный газ, который вновь используется для получения клатрата. Высокая экономичность и сравнительно мягкие условия осуществления этого процесса делают его перспективным в качестве промышленного метода опреснения морской воды.

Раствором называется твердая или жидкая гомогенная система, состоящая из двух или более компонентов (составных частей), относительные количества которых могут изменяться в широких пределах.

Всякий раствор состоит из растворенных веществ и растворителя, т.е. среды, в которой эти вещества равномерно распределены в виде молекул или ионов. Обычно растворителем считают тот компонент, который в чистом виде существует в таком же агрегатном состоянии, что и полученный раствор (например, в случае водного раствора соли растворителем, конечно, является вода). Если же оба компонента до растворения находились в одинаковом агрегатном состоянии (например, спирт и вода), то растворителем считается компонент, находящийся в большем количестве.

Однородность растворов делает их очень сходными с химическими соединениями. Выделение теплоты при растворении некоторых веществ тоже указывает на химическое взаимодействие между растворителем и растворяемым веществом. Отличие растворов от химических соединений состоит в том, что состав раствора может изменяться в широких пределах.

Кроме того, в свойствах раствора можно обнаружить многие свойства его отдельных компонентов, чего не наблюдается в случае химического соединения. Непостоянство состава растворов приближает их к механическим смесям, но от последних они резко отличаются своею однородностью.

Таким образом, растворы занимают промежуточное положение между механическими смесями и химическими соединениями.

Растворение кристалла в жидкости протекает следующим образом. Когда вносят кристалл в жидкость, в которой он может растворяться, от поверхности его отрываются отдельные молекулы. Последние благодаря диффузии равномерно распределяются по всему объему растворителя. Отделение молекул от поверхности твердого тела вызывается, с одной стороны, их собственным колебательным движением, а с другой, — притяжением со стороны молекул растворителя.

Тогда устанавливается динамическое равновесие, при котором в единицу времени столько же молекул растворяется, сколько и выделяется из раствора.

Раствор, находящийся в равновесии с рас растворяющимся веществом, называется насыщенным раствором.

Насыщенные растворы применяют сравнительно редко. В большинстве случаев пользуются ненасыщенными растворами, содержащими меньше растворенного вещества, чем его содержит при данной температуре насыщенный раствор. При этом растворы с низким содержанием растворенного вещества называются разбавленными, с высоким — концентрированными.

Состав раствора (и, в частности, содержание в нем растворенного вещества) может выражаться разными способами — как с помощью безразмерных единиц (долей или процентов), так и через размерные величины — концентрации.

Способы выражения состава растворов

Название и символ

Определение

Размерность

Примечание

Массовая доля растворенного вещества В, w (B)

Отношение массы растворенного вещества В (mB ) к массе раствора (mР ).

Безразмерная величина

в 100 масс.ч. раствора содержится 20 масс. ч. NaOH

Молярная доля растворенного вещества В, xB

Отношение количества второго вещества (nB ) к суммарному количеству всех веществ, входящих в состав раствора, включая растворитель

(å ni = nB + n1 + n2 + ... ni )

Безразмерная величина

xHCl = 0,02 или

xHCl = 2% -

Моляльность вещесства В в растворе, Cm (B)

Отношение количества растворенного вещества В (nB ) к массе растворителя (mB ) в кг

моль/кг = Мн

C m (H 2 SO 4 ) = 0,1 моль/ кг

C m (H 2 SO 4 ) = 0,1 Мн

в растворе на 1 кг H2 O приходится 0,1 моль H2 SO4 . Раствор называют децимолярным

Молярная концентрация вещества В, CB

Отношение количества растворенного вещества В (nB ) к объему раствора (VР )

моль/л = М

C(KCl) = 2 моль/л

в 1 л раствора содержится 2 моль KCl

Молярная концентрация эквивалентов вещества В, Cэк (B)

Отношение количества эквивалентов растворенного вещества В (nэк ) к объему раствора (VР )

моль/л = н

C эк (Na 2 CO 3 ) = 0,01 моль/ л

C эк (Na 2 CO 3 ) = 0,01 н

в 1 л раствора содержится 0,01 моль эквивалентов Na2 CO3 - сантимолярный раствор

Произведение молярной концентрации эквивалентов вещества В (Cэк (B)) на объем раствора (VР ) равно количеству эквивалентов этого вещества (nэк (B)). Поэтому закон эквивалентов: nэк (A) + nэк (B) для растворов имеет вид:

C эк (A)·V P (A) = C эк (B)·V P (B).

Это уравнение очень часто используют в расчетах, особенно в аналитической химии.

Титр раствора вещества B

Концентрация стандартного раствора, равная массе вещества В (mB ), содержащегося в 1 мл раствора

T(NaCl) = 0,0250 г/мл

в 1 мл раствора содержится 0,0250 г NaCl

Большинство веществ, находящихся в кристаллическом состоянии, растворяются в жидкостях с поглощением теплоты. Однако при растворении в воде гидроксида натрия, карбоната калия, безводного сульфата меди и многих других веществ происходит заметное повышение температуры. Выделяется теплота также при растворении в воде некоторых жидкостей и всех газов.

Количество теплоты, поглощающейся (или выделяющейся) при растворении одного моля вещества, называется теплотой растворения этого вещества.

Теплота растворения имеет отрицательное значение, если при растворении теплота поглощается, и положительное — при выделении теплоты. Например, теплота растворения нитрата аммония равна —26,4 кДж/моль, гидроксида калия +55,6 кДж/моль и т. д.

Процесс растворения сопровождается значительным возрастанием энтропии системы, так как в результате равномерного распределения частиц одного вещества в другом резко увеличивается число микросостояний системы. Поэтому, несмотря па эндотермичность растворения большинства кристаллов, изменение энергии Гиббса системы при растворении отрицательно и процесс протекает самопроизвольно.

При растворении кристаллов происходит их разрушение, что требует затраты энергии. Поэтому растворение должно было бы сопровождаться поглощением теплоты. Если же наблюдается обратный эффект, то это показывает, что одновременно с растворением происходит какое-то взаимодействие между растворителем и растворенным веществом, при котором выделяется в виде теплоты больше энергии, чем ее расходуется иа разрушение кристаллической решетки.

Действительно, в настоящее время установлено, что при растворении многих веществ их молекулы (или ионы) с молекулами растворителя, образуя соединения, называемые с о л ь в а т а м и (от латинского solvere — растворять); этот процесс называется сольватацией. В частном случае, когда растворителем является вода, эти соединения называются гидратами, а самый процесс их образования — гидратацией

Гидраты, как правило, нестойкие соединения, во многих случаях разлагающиеся уже при выпаривании растворов. Но иногда гидраты настолько прочны, что при выделении растворенного вещества из раствора вода входит в состав его кристаллов. Вещества, в кристаллы которых входят молекулы воды, называются кристаллогидратами, а содержащаяся в них вода — к р и -. с т а л л и з а ц и о и н о й.

Состав кристаллогидратов принято изображать формулами, показывающими, какое количество кристаллизационной воды содержит кристаллогидрат. Например, кристаллогидрат сульфата меди (медный купорос).

Прочность связи между веществом и кристаллизационной водой в кристаллогидратах различна. Многие из них теряют кристаллизационную воду уже при комнатной температуре. Так, прозрачные кристаллы соды (НагС0 3 - 10Н 2 О) легко «выветриваются», — теряя кристаллизационную воду, становятся тусклыми и постепенно рассыпаются в порошок. Для обезвоживания других кристаллогидратов требуется довольно сильное нагревание.

Растворимостью называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества при данных условиях служит содержание его в насыщенном растворе. Поэтому численно растворимость может быть выражена теми же способами, что и состав, например, процентным отношением массы растворенного вещества к массе насыщенного раствора или количеством растворенного вещества, содержащимся в 1 л насыщенного раствора. Часто растворимость выражают также числом единиц массы безводного вещества, насыщающего при данных условиях 100 единиц массы растворителя; иногда выраженную этим способом растворимость называют коэффициентом растворимости.

Растворимость различных веществ в воде изменяется в широких пределах. Если в 100 г воды растворяется более 10 г вещества, то такое вещество принято называть хорошо растворимым; если растворяется менее 1 г вещества — малорастворимым и, наконец, практически нерастворимым, если в раствор переходит менее 0,01 г вещества.

Растсорение большинства твердых тел сопровождается поглощением теплоты. Это объясняется затратой значительного количества энергии на разрушение кристаллической решетки твердого тела, что обычно не полностью компенсируется энергией, выделяющейся при образовании гидратов (сольватов). Прилагая принцип Ле Шателье к равновесию между веществом в кристаллическом состоянии п его насыщенным раствором

приходим к выводу, что в тех случаях, когда вещество растворяется с поглощением энергии, повышение температуры должно приводить к увеличению его растворимости

В большинстве подобных случаев с повышением температуры взаимная растворимость жидкостей увеличивается до тех пор, пока не будет достигнута температура, при которой обе жидкости смешиваются в любых пропорциях.

При растворении твердых тел в воде объем системы обычно изменяется незначительно. Поэтому растворимость веществ, находящихся в твердом состоянии, практически не зависит от давления.

Жидкости также могут растворяться в жидкостях. Некоторые из них неограниченно растворимы одна в другой, т. е. смешиваются друг с другом в любых пропорциях, как, например, спирт и вода, другие — взаимно растворяются лишь до известного предела.

Температура, прн которой ограниченная взаимная растворимость жидкостей переходит в неограниченную, называется критической температурой растворения

закон распределения, согласно которому вещество, способное растворяться в двух несме-ишвающихся растворителях, распределяется между ними так, что отношение его концентраций в этих растворителях при постоянной температуре остается постоянным, независимо от общего количества растворенного вещества:

С 1 /С 2 = К

Здесь С 1 и С 2 —концентрации растворенного вещества в первом и втором растворителях; /(— так называемый коэффициент распределения.

Растворение газов в воде представляет собой экзотермический процесс. Поэтому растворимость газов с повышением температуры уменьшается. Если оставить в теплом помещении стакан с холодной водой, то внутренние стенки его покрываются пузырьками газа — это воздух, который был растворен в воде, выделяется из нее вследствие нагревания. Кипячением можно удалить из воды весь растворенный в ней воздух.

Однако растворение газов в органических жидкостях нередко сопровождается поглощением теплоты; в подобных случаях с ростом температуры растворимость газа увеличивается.

Закон Генри: Масса газа, растворяющегося при постоянной температуре в данном объеме жидкости, прямо пропорциональна парциальному давлению газа.

Закон Генри может быть выражен уравнением

С = kp

где С — массовая концентрация газа в насыщенном растворе; р — парциальное давление; k — коэффициент пропорциональности, называемый константой Генри (или коэффициентом Генри).

Отметим важное следствие закона Генри: объем газа, растворяющегося при постоянной температуре в данном объеме жидкости, не зависит от его парциального давления. Если над жидкостью находится смесь нескольких газов, то растворимость каждого из них определяется его парциальным давлением .

Это необходимо учитывать при расчете растворимости газов, находящихся в смеси с другими газами. Газы подчиняются закону Генри пи не очень высоких давлениях и притом лишь в случае, когда они не вступают в химическое взаимодействие с растворителем. При высоких давлениях, когда поведение всех газов заметно отличается от идеального, отклоненне от закона Генри наблюдается и в случае газов, химически не взаимодействующих с растворителем.

Растворимость большинства веществ уменьшается с понижением температуры, поэтому при охлаждении горячих насыщенных растворов избыток растворенного вещества обычно выделяется. Однако, если производить охлаждение осторожно и медленно, защитив при этом раствор от возможности попадания в него частиц растворенного вещества извне, то выделения его из раствора может и не произойти. В этом случае получится раствор, содержащий значительно больше растворенного вещества, чем его требуется для насыщения при данной температуре. Это явление было открыто и подробно изучено русским академиком Т. Е. Ловицем (1794 г.), который назвал такие растворы пересыщенными. В спокойном состоянии они могут годами оставаться без изменения. Но стоит только бросить в раствор кристаллик того вещества, которое в нем растворено, как тотчас же вокруг него начинают расти другие кристаллы и через короткое время весь избыток растворенного вещества выкристаллизовывается. Иногда кристаллизация начинается от простого сотрясенияраствора, а также от трения стеклянной палочкой о стенки сосуда, в котором находится раствор. При кристаллизации выделяетсязначительное количество теплоты, так что сосуд с раствором за-метно нагревается. Очень легко образуют пересыщенные рас-творы Na 2 SO 4 -10 H 2 O (глауберова соль), Na 2 B 4 0 7 - 10Н 2 О (бура), Na 2 S 2 03-5 H 2 0 (тиосульфат натрия).

Из сказанного следует, что пересыщенные растворы являются неустойчивыми системами, способными к существованию только при отсутствии в системе твердых частиц растворенного вещества. Возможность длительного существования таких растворов объясняется трудностью первоначального возникновения мельчайших «зародышевых» кристалликов, так называемых центров кристаллизации, от которых кристаллизация распространяется на всю массу раствора.

раствор представляет собой го-могенную систему. Частицы растворенного вещества и растворителя находятся в беспорядочном тепловом движении и равномерно распределяются по всему объему раствора. Если поместить в цилиндр концентрированный раствор какого-либо вещества, например, сахара, а поверх него осторожно налить слой более разбавленного раствора сахара, то вначале сахар и вода будут распределены в объеме раствора неравномерно


. Однако через некоторое время молекулы сахара и воды вновь равномерно распределятся по всему объему жидкости. Это происходит потому, что молекулы сахара, беспорядочно двигаясь, проникают как из концентрированного раствора в разбавленный, так и в обратном направлении; но при этом в течение любого промежутка времени из более концентрированного раствора в менее концентрированный переходит больше молекул сахара, чем из разбавленного раствора в концентрированный. Точно так же молекулы воды движутся в различных направлениях, но при этом из разбавленного раствора, более богатого водой, в концентрированный раствор переходит больше молекул воды, чем за то же время переносится в обратном направлении. Таким образом возникает направленное перемещение сахара из концентрированного раствора в разбавленный, а воды — из разбавленного раствора в концентрированный; каждое вещество переносится при этом туда, где его концентрация меньше. Такой самопроизвольный процесс перемещения вещества, приводящий к выравниванию его концентрации, называется диффузией.

При измерениях осмотического давления различных растворов было установлено, что величина осмотического давления зависит от концентрации раствора и от его температуры, но не зависит ни от природы растворенного вещества, ни от природы растворителя. В 1886 г. Вант-Гофф показал, что для растворов неэлектролитов невысоких концентраций зависимость осмотического давления от концентрации температуры раствора выражается уравнением (закон Вант-Гоффа):

P = CRT

Здесь Р — осмотическое давление раствора, кПа; С — его молярная концентрация (молярность), моль/л; R — универсальная газовая постоянная, 8,314 Дж/(моль-К); Т—абсолютная температура раствора.

При данной температуре давление насыщенного пара над каждой жидкостью — величина постоянная. Опыт показывает, что при растворении в жидкости какого-либо вещества давление насыщенного пара этой жидкости понижается.

Таким образом, давление насыщенного пара растворителя над раствором всегда ниже, чем, над чистым растворителем при той же температуре. Разность между этими величинами принято называть понижением давления пара над раствором (или понижением давления пара раствора). Отношение величины этого понижения к давлению насыщенного пара над чистым раствори, телем называется относительным понижением давления пара над раствором.

Обозначим давление насыщенного пара растворителя над чистым растворителем через р 0 , а над раствором через р. Тогда относительное понижение давления пара над раствором будет представлять собою дробь:(Ро — Р)/Ро

В 1887 г. французский физик Рауль, изучая растворы различных нелетучих жидкостей и веществ в твердом состоянии, установил закон, связывающий понижение давления пара над разбавленными растворами неэлектролитов с концентрацией:

Относительное понижение давления насыщенного пара растворителя над раствором равно молярной доле растворенного вещества.

Математическим выражением закона Рауля является уравнение:

(.Ро — Р)/Ро = Ni

Здесь N 2 — молярная доля растворенного вещества. Явление понижения давления насыщенного пара над раствором вытекает из принципа Ле Шателье.

Индивидуальные вещества характеризуются строго определëнными температурами переходов из одного агрегатного состояния в другое (температура кипения, температура плавления, температура сублимации и т. п.). Так вода, при нормальном атмосферном давлении (101,3 кПа) кристаллизуется при 0°С и кипит при 100°С.

Иначе обстоит дело с растворами. Присутствие растворëнного вещества повышает температуру кипения и понижает температуру замерзания растворителя, и тем сильнее, чем концентрированнее раствор. В большинстве случаев из раствора кристаллизуется из раствора (при замерзании) или выкипает (при кипении) только растворитель, вследствие чего концентрация раствора в ходе его замерзания или кипения возрастает. Это в свою очередь приводит к ещë большему повышению температуры кипения и снижению температуры кристаллизации. Таким образом, раствор кристаллизуется и кипит не при определëнной температуре, а в некотором температурном интервале. Температуру начала кристаллизации и начала кипения данного раствора называют его температурой кристаллизации и температурой кипения.

Разность между температурами кипения раствора (t к ) и чистого растворителя (t ок ) называют повышением температуры кипения раствора (Δt к ). Разность между температурами замерзания чистого растворителя (t ОЗ ) раствора (t З ) называют понижением температуры замерзания раствора (Δt З ).

Δt к = t к – t ок ; Δt З = t ОЗ – t З .

Всякая жидкость начинает кипеть при той температуре, при которой давление еë насыщенного пара достигает величины внешнего давления. Например, вода под давлением 101,3 кПа кипит при 100°С потому, что при этой температуре давление водяного пара как раз равно 101,3 кПа. Если же растворить в воде какое-нибудь нелетучее вещество, то давление еë пара понизится. Чтобы довести давление пара полученного раствора до 101,3 кПа, нужно нагреть раствор выше 100°С. Отсюда следует, что температура кипения раствора всегда выше температуры кипения чистого растворителя. Аналогично объясняется и понижение температуры замерзания растворов.

Повышение температуры кипения и понижение температуры замерзания растворов соответствуют принципу Ле Шателье. Рассмотрим процесс замерзание раствора. Пусть имеется равновесие между жидкостью и твëрдой фазой, например, равновесие вода - лëд при 0°С. Его можно выразить уравнением:

Н 2 О (К) Н + + ОН –

Если растворить в воде некоторое количество какого-либо вещества, то концентрация молекул воды в жидкости понизится и пойдëт процесс, увеличивающий еë, - плавление льда. Для установления нового равновесия необходимо понизить температуру.

Согласно второму закону Рауля: для разбавленных растворов неэлектролитов повышение температуры кипения и понижение температуры замерзания пропорциональны концентрации раствора.

ΔТ К = Э·С m (B); ΔТ З = К·С m (В).

Здесь С m (В) - моляльная концентрация; Э и К - эбулиоскопическая и криоскопическая постоянные, зависящие только от природы растворителя, но не зависящие от природы растворëнного вещества. Для воды криоскопическая постоянная К равна 1,86, эбулиоскопическая постоянная Э равна 0,52.На измерениях температур кипения и замерзания растворов основаны эбулиоскопический и криоскопический методы определения молекулярных масс веществ.

Буферные растворы – растворы, концентрация ионов водорода (рН) которых не изменяется от прибавления ограниченных количеств сильной кислоты или щелочи (см. водородный показатель). Б.р. состоят из смеси раствора слабой кислоты и ее соли сильного основания или, наоборот, — слабого основания и его соли сильной кислоты, например: СН 3 СOOН+СН 3 СOONa — ацетатный буфер, NH 4 OH+NHCl — аммиачный буфер. Иногда Б.р. может служить смесь растворов двух кислых или кислой и основной солей многоосновной слабой кислоты и сильного основания. Например, фосфатный Б.р. может быть составлен из следующих пар: 1) H 3 PO 4 +NaH 2 PO 4 ; 2) NaH 2 PO 4 +Na 2 HPO 4 ; 3) Na 2 HPO 4 +Na 3 PO 4 , а карбонатный — из 1) H 2 CO 3 +NaHCO 3 ; 2) NaHCO 3 +Na 2 CO 3 . Действие Б.р. определяется наличием двух взаимосвязанных равновесных систем — диссоциацией и гидролизом. Для определения пределов действия Б.р. вводится понятие буферная емкость, измеряемая количеством сильной кислоты или основания (в г-экв), которое надо добавить к 1 л Б.р., чтобы сместить рН на единицу. Максимальная буферная емкость соответствует содержанию компонентов в эквивалентных количествах. В маломинерализованных природных водах буферность в основном создается карбонатами, т.е. свободной угольной кислотой и ее солями сильных оснований (Ca, Mg, Na). В морских водах в образовании буферности участвует и боратный буфер. Буферная емкость морской воды при 0 о С в 11 раз выше, чем у раствора NaCl с концентрацией 35 о / оо и в 9 раз выше, чем у дистиллированной воды. При 30 о С превышение составляет соответственно 25 и 19 раз. Такое увеличение буферной емкости морской воды с температурой связано с усилением диссоциации и гидролиза компонентов, составляющих буферность. У дистиллированной воды буферность несколько выше, чем у раствора NaCl за счет лучшей растворимости СO 2 . Поскольку величина рН зависит не от концентраций компонентов, а от их соотношения, то при разбавлении Б.р. она остается постоянной. В то же время, несмотря на высокую буферную емкость природных вод, процессы фотосинтеза (см.) или дыхания сильно влияют на величину рН, так как при этом меняются соотношения между концентрациями СO 2 и НСO 3 – . Б.р. играют важную роль в живых организмах. Можно добавить, что строго фиксированные величины рН в различных органах высших животных и человека, как правило, поддерживаются не одним, а целой системой Б.р., например, в крови — буферными растворами на основании карбонатов и фосфатов. Кислые или щелочные стоки, попадающие в водоем, могут быть нейтрализованы карбонатной буферной системой природных вод. Это же способствует поддержанию постоянства рН воды при введении реагентов в процессе обработки воды. При биологической очистке сточных вод (см.) оптимальные величины рН для нормального протекания процессов жизнедеятельности микроорганизмов поддерживаются наличием буферных систем (карбонатной, аммонийной и фосфатной систем). Кроме того, Б.р. широко используются при химическом анализе воды.

Вода и растворыСтраница 8

По растворимости в воде все вещества делятся на три группы: 1) хорошо растворимые, 2) малорастворимые и 3) практически нерастворимые. Последние называют также нерастворимыми веществами. Однако следует отметить, что абсолютно нерастворимых веществ нет. Если опустить в воду стеклянную палочку или кусочек золота или серебра, то они в ничтожно малых количествах все же растворяются в воде. Стекло, металлы, некоторые соли - это примеры практически нерастворимых в воде веществ (твердые вещества). К ним следует также отнести керосин, растительное масло (жидкие вещества), благородные газы (газообразные вещества).

Примером малорастворимых в воде веществ могут служить гипс, сульфат свинца (твердые вещества), диэтиловый эфир, бензол (жидкие вещества), метан, азот, кислород (газообразные вещества).

Многие вещества в воде растворяются весьма хорошо. Примером таких веществ могут служить сахар, медный купорос, гидроксид натрия (твердые вещества), спирт, ацетон (жидкие вещества), хлороводород, аммиак (газообразные вещества).

Из приведенных примеров следует, что растворимость, прежде всего, зависит от природы веществ. Кроме того, она зависит также от температуры и давления. Сам процесс растворения обусловлен взаимодействием частиц растворимого вещества и растворителя; это самопроизвольный процесс.

По соотношению преобладания числа частиц, переходящих в раствор и удаляющихся из раствора, различают растворы насыщенные, ненасыщенные и пересыщенные. С другой стороны, по относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные.

Раствор, в котором данное вещество при данной температуре больше не растворяется, т. е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным, а раствор, в котором еще можно растворить добавочное количество данного вещества, - ненасыщенным.

Отношение массы вещества, образующего насыщенный раствор при данной температуре, к массе растворителя называют растворимостью (7.3.1.) этого вещества, или коэффициентом растворимости(7.3.2.):

(7.3.1), (7.3.2).

Понятие растворимости бессмысленно для полностью растворимых веществ друг в друге (этиловый спирт – вода).

Зависимость растворимости веществ от температуры и природы растворителя. Растворимость веществ существенно зависит от природы растворяемого вещества и растворителя, температуры и давления. Еще в середине прошлого тысячелетия опытным путем было установлено правило, согласно которому подобное растворяется в подобном. Так, вещества с ионным (соли, щелочи) или ковалентно-полярным (спирты, альдегиды) типом связи хорошо растворимы в полярных растворителях, в первую очередь в воде. И наоборот, растворимость кислорода в бензоле, например, на порядок выше, чем в воде, так как молекулы О 2 и С 6 Н 6 неполярны.


Для подавляющего большинства твердых тел растворимость увеличивается с повышением температуры.

Если раствор, насыщенный при нагревании, осторожно охладить так, чтобы не выделялись кристаллы соли, то образуется пересыщенный раствор. Пересыщенным называют раствор, в котором при данной температуре содержится большее количество растворенного вещества, чем в насыщенном растворе. Пересыщенный раствор неустойчив, и при изменении условий (при встряхивании или внесении в раствор затравки для кристаллизации) выпадает осадок, над которым остается насыщенный раствор.

В отличие от твердых тел растворимость газов в воде с повышением температуры уменьшается, что обусловлено непрочностью связи между молекулами растворенного вещества и растворителя. Другой важной закономерностью, описывающей растворимость газов в жидкостях, является закон Генри: Растворимость газа прямо пропорциональна его давлению над жидкостью.