В каком году был создан транзистор. Первый транзистор: дата и история изобретения, принцип работы, назначение и применение. Области применения полевых транзисторов

Изобретение транзистора, ставшее важнейшим достижением ХХ века, связано с именами многих замечательных ученых. О тех, кто создавал и развивал полупроводниковую электронику, и пойдет речь в этой статье.

Ровно 50 лет назад американцам Джону Бардину, Уолтеру Браттейну и Уильяму Шокли (рис. 1) была присуждена Нобелевская премия по физике «За исследования в области полупроводников и открытие транзистора». Тем не менее, анализ истории науки однозначно свидетельствует, что открытие транзистора - это не только заслуженный успех Бардина, Браттейна и Шокли.

Рис. 1. Лауреаты Нобелевской премии по физике за 1956 год

Первые опыты

Рождение твердотельной электроники можно отнести к 1833 году. Именно тогда Майкл Фарадей (рис. 2), экспериментируя с сульфидом серебра, обнаружил, что проводимость данного вещества (а это был, как мы теперь называем, полупроводник) растет с повышением температуры, в противоположность проводимости металлов, которая в данном случае уменьшается. Почему так происходит? С чем это связано? На эти вопросы Фарадей ответить не смог.

Следующей вехой в развитии твердотельной электроники стал 1874 год. Немецкий физик Фердинанд Браун (рис. 3), будущий нобелевский лауреат (в 1909 году он получит премию «За выдающийся вклад в создание беспроволочной телеграфии») публикует статью в журнале Analen der Physik und Chemie, в которой на примере «естественных и искусственных серных металлов» описывает важнейшее свойство полупроводников - проводить электрический ток только в одном направлении. Выпрямляющее свойство контакта полупроводника с металлом противоречило закону Ома. Браун (рис. 4) пытается объяснить наблюдаемое явление и проводит дальнейшие исследования, но безрезультатно. Явление есть, объяснения нет. По этой причине современники Брауна не заинтересовались его открытием, и только пять десятилетий спустя выпрямляющие свойства полупроводников были использованы в детекторных приемниках.

Рис. 3. Фердинанд Браун

Рис. 4. Фердинанд Браун в своей лаборатории

Год 1906. Американский инженер Гринлиф Виттер Пикард (рис. 5) получает патент на кристаллический детектор (рис. 6). В своей заявке на получение патента он пишет: «Контакт между тонким металлическим проводником и поверхностью некоторых кристаллических материалов (кремний, галенит, пирит и др.) выпрямляет и демодулирует высокочастотный переменный ток, возникающий в антенне при приеме радиоволн».

Рис. 5. Гринлиф Пикард

Рис. 6. Принципиальная схема кристаллического детектора Пикарда

Тонкий металлический проводник, с помощью которого осуществлялся контакт с поверхностью кристалла, внешне очень напоминал кошачий ус.

Кристаллический детектор Пикарда так и стали называть - «кошачий ус» (cat"s whisker).

Чтобы «вдохнуть жизнь» в детектор Пикарда и заставить его устойчиво работать, требовалось найти наиболее чувствительную точку на поверхности кристалла. Сделать это было непросто. На свет появляется множество хитроумных конструкций «кошачего уса» (рис. 7), облегчающих поиск заветной точки, но стремительный выход на авансцену радиотехники электронных ламп надолго отправляет детектор Пикарда за кулисы.

Рис. 7. Вариант конструкции «кошачий ус»

И все же «кошачий ус» намного проще и меньше вакуумных диодов, к тому же намного эффективнее на высоких частотах. А что если заменить вакуумный триод, на котором была основана вся радиоэлектроника того времени, (рис. 8) на полупроводник? Возможно ли это? В начале ХХ века подобный вопрос не давал покоя многим ученым.

Рис. 8. Вакуумный триод

Лосев

Советская Россия. 1918 год. По личному распоряжению Ленина в Нижнем Новгороде создается радиотехническая лаборатория (рис. 9). Новая власть остро нуждается в «беспроволочной телеграфной» связи. К работе в лаборатории привлекаются лучшие радиоинженеры того времени - М. А. Бонч-Бруевич, В. П. Вологдин, В. К. Лебединский, В. В. Татаринов и многие другие.

Рис. 9. Нижегородская радиолаборатория

Приезжает в Нижний Новгород и Олег Лосев (рис. 10).

Рис. 10. Олег Владимирович Лосев

После окончания Тверского реального училища в 1920 году и неудачного поступления в Московский институт связи Лосев согласен на любую работу, только бы приняли в лабораторию. Его берут посыльным. Общежития посыльным не полагается.

17-летний Лосев готов жить в помещении лаборатории, на лестничной площадке перед чердаком, только бы заниматься любимым делом.

С раннего возраста он страстно увлекался радиосвязью. В годы Первой мировой войны в Твери была построена радиоприемная станция. В ее задачи входило принимать сообщения от союзников России по Антанте и далее по телеграфу передавать их в Петроград. Лосев часто бывал на радиостанции, знал многих сотрудников, помогал им и не мыслил свою дальнейшую жизнь без радиотехники. В Нижнем Новгороде у него не было ни семьи, ни нормального быта, но было главное - возможность общаться со специалистами в области радиосвязи, перенимать их опыт и знания. После выполнения необходимых работ в лаборатории ему разрешали заниматься самостоятельным экспериментированием.

В то время интерес к кристаллическим детекторам практически отсутствовал. В лаборатории никто особо не занимался этой темой. Приоритет в исследованиях был отдан радиолампам. Лосеву очень хотелось работать самостоятельно. Перспектива получить ограниченный участок работы «по лампам» его никак не вдохновляет. Может быть, именно по этой причине он выбирает для своих исследований кристаллический детектор. Его цель - усовершенствовать детектор, сделать его более чувствительным и стабильным в работе. Приступая к экспериментам, Лосев ошибочно предполагал, что «в связи с тем, что некоторые контакты между металлом и кристаллом не подчиняются закону Ома, то вполне вероятно, что в колебательном контуре, подключенном к такому контакту, могут возникнуть незатухающие колебания». В то время уже было известно, что для самовозбуждения одной лишь нелинейности вольтамперной характеристики недостаточно, должен обязательно присутствовать падающий участок. Любой грамотный специалист не стал бы ожидать усиления от детектора. Но вчерашний школьник ничего этого не знает. Он меняет кристаллы, материал иглы, аккуратно фиксирует получаемые результаты и в один прекрасный день обнаруживает искомые активные точки у кристаллов, которые обеспечивают генерацию высокочастотных сигналов.

«Все с детства знают, что то-то и то-то невозможно, но всегда находится невежда, который этого не знает, он-то и делает открытие», - шутил Эйнштейн.

Свои первые исследования генераторных кристаллов Лосев производил на простейшей схеме, представленной на рис. 11.

Рис. 11. Схема первых опытов Лосева

Испытав большое количество кристаллических детекторов, Лосев выяснил, что лучше всего генерируют колебания кристаллы цинкита, подвергнутые специальной обработке. Для получения качественных материалов он разрабатывает технологию приготовления цинкита методом сплавливания в электрической дуге естественных кристаллов. При паре цинкит - угольное острие, при подаче напряжения в10 В получался радиосигнал с длиной волны 68 м. При снижении генерации реализуется усилительный режим детектора.

Заметим, что «генерирующий» детектор был впервые продемонстрирован еще в 1910 году английским физиком Уильямом Икклзом (рис. 12).

Рис 12. Уильям Генри Икклз

Новое физическое явление не привлекает внимания специалистов, и о нем на какое-то время забывают. Икклз тоже ошибочно объяснял механизм «отрицательного» сопротивления исходя из того, что сопротивление полупроводника падает с увеличением температуры вследствие тепловых эффектов, возникающих на границе «металл–полупроводник».

В 1922 году на страницах научного журнала «Телеграфия и телефония без проводов» появляется первая статья Лосева, посвященная усиливающему и генерирующему детектору. В ней он очень подробно описывает результаты своих экспериментов, причем особое внимание уделяет обязательному присутствию падающего участка вольтамперной характеристики контакта.

В те годы Лосев активно занимается самообразованием. Его непосредственный руководитель профессор В. К. Лебединский помогает ему в изучении радиофизики. Лебединский понимает, что его молодой сотрудник сделал настоящее открытие и тоже пытается дать объяснение наблюдаемому эффекту, но тщетно. Фундаментальная наука того времени еще не знает квантовой механики. Лосев, в свою очередь, выдвигает гипотезу, что при большом токе в зоне контакта возникает некий электрический разряд наподобие вольтовой дуги, но только без разогрева. Этот разряд закорачивает высокое сопротивление контакта, обеспечивая генерацию.

Лишь через тридцать лет сумели понять, что собственно было открыто. Сегодня мы бы сказали, что прибор Лосева - это двухполюсник с N-образной вольтамперной характеристикой, или туннельный диод, за который в 1973 году японский физик Лео Исаки (рис. 13) получил Нобелевскую премию.

Рис. 13. Лео Исаки

Руководство нижегородской лаборатории понимало, что серийно воспроизвести эффект не удастся. Немного поработав, детекторы практически теряли свойства усиления и генерации. Об отказе от ламп не могло быть и речи. Тем не менее практическая значимость открытия Лосева была огромной.

В 1920-е годы во всем мире, в том числе и в Советском Союзе, радиолюбительство принимает характер эпидемии. Советские радиолюбители пользуются простейшими детекторными приемниками, собранными по схеме Шапошникова (рис. 14).

Рис. 14. Детекторный приемник Шапошникова

Для повышения громкости и дальности приема применяются высокие антенны. В городах применять такие антенны было затруднительно из-за промышленных помех. На открытой местности, где практически нет помех, хороший прием радиосигналов не всегда удавался из-за низкого качества детекторов. Введение в антенный контур приемника отрицательного сопротивления детектора с цинкитом, поставленного в режим, близкий к самовозбуждению, значительно усиливало принимаемые сигналы. Радиолюбителям удавалось услышать самые отдаленные станции. Заметно повышалась избирательность приема. И это без использования электронных ламп!

Лампы были не дешевы, причем к ним требовался специальный источник питания, а детектор Лосева мог работать от обычных батареек для карманного фонарика.

В итоге оказалось, что простые приемники конструкции Шапошникова с генерирующими кристаллами предоставляют возможность осуществлять гетеродинный прием, являвшийся в то время последним словом радиоприемной техники. В последующих статьях Лосев описывает методику быстрого поиска активных точек на поверхности цинкита и заменяет угольное острие металлическим. Он дает рекомендации, как следует обрабатывать кристаллы и приводит несколько практических схем для самостоятельной сборки радиоприемников (рис. 15).

Рис. 15. Принципиальная схема кристадина О. В. Лосева

Устройство Лосева позволяет не только принимать сигналы на больших расстояниях, но и передавать их. Радиолюбители в массовом порядке, на основе детекторов-генераторов, изготавливают радиопередатчики, поддерживающие связь в радиусе нескольких километров. Вскоре издается брошюра Лосева (рис. 16). Она расходится миллионными тиражами. Восторженные радиолюбители писали в различные научно-популярные журналы, что «при помощи цинкитного детектора в Томске, например, можно услышать Москву, Нижний и даже заграничные станции».

Рис. 16. Брошюра Лосева, издание 1924 года

На все свои технические решения Лосев получает патенты, начиная с «Детекторного приемника-гетеродина», заявленного в декабре 1923 года.

Статьи Лосева печатаются в таких журналах, как «ЖЭТФ», «Доклады АН СССР», Radio Revue, Philosophical Magazine, Physikalische Zeitschrift.

Лосев становится знаменитостью, а ведь ему еще не исполнилось и двадцати лет!

Например, в редакторском предисловии к статье Лосева «Осциллирующие кристаллы» в американском журнале The Wireless World and Radio Review за октябрь 1924 года говорится: «Автор этой статьи, господин Олег Лосев из России, за сравнительно короткий промежуток времени приобрел мировую известность в связи с его открытием осциллирующих свойств у некоторых кристаллов».

Другой американский журнал - Radio News - примерно в то же время публикует статью под заголовком «Сенсационное изобретение», в которой отмечается: «Нет необходимости доказывать, что это - революционное радиоизобретение. В скором времени мы будем говорить о схеме с тремя или шестью кристаллами, как мы говорим сейчас о схеме с тремя или шестью усилительными лампами. Потребуется несколько лет, чтобы генерирующий кристалл усовершенствовался настолько, чтобы стать лучше вакуумной лампы, но мы предсказываем, что такое время наступит».

Автор этой статьи Хьюго Гернсбек называет твердотельный приемник Лосева - кристадином (кристалл + гетеродин). Причем не только называет, но и предусмотрительно регистрирует название, как торговую марку (рис. 17). Спрос на кристадины огромен.

Рис. 17. Кристаллический детектор Лосева. Изготовлен в Radio News Laboratories. США, 1924 год

Интересно, что когда в нижегородскую лабораторию приезжают немецкие радиотехники, чтобы лично познакомиться с Лосевым, они не верят своим глазам. Они поражаются таланту и юному возрасту изобретателя. В письмах из-за границы Лосева величали не иначе как профессором. Никто и представить не мог, что профессор еще только постигает азы науки. Впрочем, очень скоро Лосев станет блестящим физиком-экспериментатором и еще раз заставит мир заговорить о себе.

В лаборатории с должности рассыльного его переводят в лаборанты, предоставляют жилье. В Нижнем Новгороде Лосев женится (правда, неудачно, как оказалось впоследствии), обустраивает свой быт и продолжает заниматься кристаллами.

В 1928 году, по решению правительства, тематика нижегородской радиолаборатории вместе с сотрудниками передается в Центральную радиолабораторию в Ленинграде, которая, в свою очередь, тоже постоянно реорганизуется. На новом месте Лосев продолжает заниматься полупроводниками, но вскоре Центральную радиолабораторию преобразовывают в Институт радиовещательного приема и акустик. В новом институте своя программа исследований, тематика работ сужается. Лаборанту Лосеву удается устроиться по совместительству в Ленинградский физико-технический институт (ЛФТИ), где у него появляется возможность продолжить исследования новых физических эффектов в полупроводниках. В конце 1920-х годов у Лосева появилась идея создать твердотельный аналог трехэлектродной вакуумной радиолампы.

В 1929–1933 гг., по предложению А. Ф. Иоффе, Лосев проводит исследования полупроводникового устройства, полностью повторяющего конструкцию точечного транзистора. Как известно, принцип действия этого прибора заключается в управлении током, текущим между двумя электродами, с помощью дополнительного электрода. Лосев действительно наблюдал данный эффект, но, к сожалению, общий коэффициент такого управления не позволял получить усиление сигнала. Для этой цели Лосев использовал только кристалл карборунда (SiC), а не кристалл цинкита (ZnO), имевшего значительно лучшие характеристики в кристаллическом усилителе (Что странно! Ему ли не знать о свойствах этого кристалла.) До недавнего времени считалось, что после вынужденного ухода из ЛФТИ Лосев не возвращался к идее полупроводниковых усилителей. Однако существует довольно любопытный документ, написанный самим Лосевым. Он датирован 12 июля 1939 года и в настоящее время хранится в Политехническом музее. В этом документе, озаглавленном «Жизнеописание Олега Владимировича Лосева», кроме интересных фактов его жизни содержится и перечень научных результатов. Особый интерес вызывают следующие строки: «Установлено, что с полупроводниками может быть построена трехэлектродная система, аналогичная триоду, как и триод, дающая характеристики, показывающие отрицательное сопротивление. Эти работы в настоящее время подготавливаются мною к печати…».

К сожалению, пока не установлена судьба этих работ, которые могли бы полностью изменить представление об истории открытия транзистора - самого революционного изобретения XX века.

Рассказывая о выдающемся вкладе Олега Владимировича Лосева в развитие современной электроники, просто невозможно не упомянуть о его открытии светоизлучающего диода.

Масштаб этого открытия нам еще только предстоит понять. Пройдет не так много времени, и в каждом доме вместо привычной лампы накаливания будут гореть «электронные генераторы света», как назвал светодиоды Лосев.

Еще в 1923 году, экспериментируя с кристадинами, Лосев обратил внимание на свечение кристаллов при пропускании через них электрического тока. Особенно ярко светились карборундовые детекторы. В 1920-е годы на Западе явление электролюминесценции одно время даже называли «свет Лосева» (Losev light, Lossew Licht). Лосев занялся изучением и объяснением полученной электролюминесценции. Он первым оценил огромные перспективы таких источников света, особо подчеркивая их высокую яркость и быстродействие. Лосев стал обладателем первого патента на изобретение светового релеприбора с электролюминесцентным источником света.

В 70-х годах ХХ века, когда светодиоды стали широко применяться, в журнале Electronic World за 1907 год была обнаружена статья англичанина Генри Роунда, в которой автор, будучи сотрудником лаборатории Маркони, сообщал, что видел свечение в контакте карборундового детектора при подаче на него внешнего электрического поля. Никаких соображений, объясняющих физику этого явления, не приводилось. Данная заметка не оказала никакого влияния на последующие исследования в области электролюминесценции, тем не менее, автор статьи сегодня официально считается первооткрывателем светодиода.

Лосев независимо открыл явление электролюминесценции и провел ряд исследований на примере кристалла карборунда. Он выделил два физически различных явления, которые наблюдаются при разной полярности напряжения на контактах. Его несомненной заслугой является обнаружение эффекта предпробойной электролюминесценции, названной им «свечение номер один», и инжекционной электролюминесценции - «свечение номер два». В наши дни эффект предпробойной люминесценции широко применяется при создании электролюминесцентных дисплеев, а инжекционная электролюминесценция является основой светодиодов и полупроводниковых лазеров. Лосеву удалось существенно продвинуться в понимании физики этих явлений задолго до создания зонной теории полупроводников. Впоследствии, в 1936 году, свечение номер один было заново обнаружено французским физиком Жоржем Дестрио. В научной литературе оно известно под названием «эффект Дестрио», хотя сам Дестрио приоритет в открытии этого явления отдавал Олегу Лосеву. Наверное, было бы несправедливо оспаривать приоритет Роунда в открытии светодиода. И все же нельзя забывать, что изобретателями радио по праву считаются Маркони и Попов, хотя всем известно, что радиоволны первым наблюдал Герц. И таких примеров в истории науки множество.

В своей статье Subhistory of Light Emitting Diode известный американский ученый в области электролюминесценции Игон Лобнер пишет о Лосеве: «Своими пионерскими исследованиями в области светодиодов и фотодетекторов он внес вклад в будущий прогресс оптической связи. Его исследования были так точны и его публикации так ясны, что без труда можно представить сейчас, что тогда происходило в его лаборатории. Его интуитивный выбор и искусство эксперимента просто изумляют».

Сегодня мы понимаем, что без квантовой теории строения полупроводников представить развитие твердотельной электроники невозможно. Поэтому талант Лосева поражает воображение. Он с самого начала видел единую физическую природу кристадина и явления инжекционной люминесценции и в этом значительно опередил свое время.

После него исследования детекторов и электролюминесценции проводились отдельно друг от друга, как самостоятельные направления. Анализ результатов показывает, что на протяжении почти двадцати лет после появления работ Лосева не было сделано ничего нового с точки зрения понимания физики этого явления. Только в 1951 году американский физик Курт Леховец (рис. 18) установил, что детектирование и электролюминесценция имеют единую природу, связанную с поведением носителей тока в p-n-переходах.

Рис. 18. Курт Леховец

Следует отметить, что в своей работе Леховец приводит в первую очередь ссылки на работы Лосева, посвященные электролюминесценции.

В 1930–31 гг. Лосев выполнил на высоком экспериментальном уровне серию опытов с косыми шлифами, растягивающими исследуемую область, и системой электродов, включаемых в компенсационную измерительную схему, для измерения потенциалов в разных точках поперечного сечения слоистой структуры. Перемещая металлический «кошачий ус» поперек шлифа, он показал с точностью до микрона, что приповерхностная часть кристалла имеет сложное строение. Он выявил активный слой толщиной приблизительно в десять микрон, в котором наблюдалось явление инжекционной люминесценции. По результатам проведенных экспериментов Лосев сделал предположение, что причиной униполярной проводимости является различие условий движения электрона по обе стороны активного слоя (или, как бы мы сказали сегодня, - разные типы проводимости). Впоследствии, экспериментируя с тремя и более зондами-электродами, расположенными в данных областях, он действительно подтвердил свое предположение. Эти исследования являются еще одним значительным достижением Лосева как ученого-физика.

В 1935 году, в результате очередной реорганизации радиовещательного института и непростых отношений с руководством, Лосев остается без работы. Лаборанту Лосеву дозволялось делать открытия, но не греться в лучах славы. И это при том, что его имя было хорошо известно сильным мира сего. В письме, датируемом 16 мая 1930 года, академик А. Ф. Иоффе пишет своему коллеге Паулю Эренфесту: «В научном отношении у меня ряд успехов. Так, Лосев получил в карборунде и других кристаллах свечение под действием электронов в 2–6 вольт. Граница свечения в спектре ограничена…».

В ЛФТИ у Лосева долгое время было свое рабочее место, но в институт его не берут, слишком независимый он человек. Все работы выполнял самостоятельно - ни в одной из них нет соавторов.

При помощи друзей Лосев устраивается ассистентом на кафедру физики Первого медицинского института. На новом месте ему намного сложнее заниматься научной работой, поскольку нет необходимого оборудования. Тем не менее, задавшись целью выбрать материал для изготовления фотоэлементов и фотосопротивлений, Лосев продолжает исследования фотоэлектрических свойств кристаллов. Он изучает более 90 веществ и особо выделяет кремний с его заметной фоточувствительностью.

В то время не было достаточно чистых материалов, чтобы добиться точного воспроизведения полученных результатов, но Лосев (в который раз!) чисто интуитивно понимает, что этому материалу принадлежит будущее. В начале 1941 года он приступает к работе над новой темой - «Метод электролитных фотосопротивлений, фоточувствительность некоторых сплавов кремния». Когда началась Великая Отечественная война, Лосев не уезжает в эвакуацию, желая завершить статью, в которой излагал результаты своих исследований по кремнию. По всей видимости, ему удалось закончить работу, так как статья была отослана в редакцию «ЖЭТФ». К тому времени редакция уже была эвакуирована из Ленинграда. К сожалению, после войны не удалось найти следы этой статьи, и теперь можно лишь догадываться о ее содержании.

22 января 1942 года Олег Владимирович Лосев умер от голода в блокадном Ленинграде. Ему было 38 лет.

В том же 1942 году в США компании Sylvania и Western Electric начали промышленное производство кремниевых (а чуть позже и германиевых) точечных диодов, которые использовались в качестве детекторовсмесителей в радиолокаторах. Смерть Лосева совпала по времени с рождением кремниевых технологий.

Военный трамплин

В 1925 году корпорация American Telephone and Telegraph (AT&T) открывает научный и опытно-конструкторский центр Bell Telephone Laboratories. В 1936 году директор Bell Telephone Laboratories Мервин Келли решает сформировать группу ученых, которая провела бы серию исследований, направленных на замену ламповых усилителей полупроводниковыми. Группу возглавил Джозеф Бекер, привлекший к работе физика-теоретика Уильяма Шокли и блестящего экспериментатора Уолтера Браттейна.

Окончив докторантуру в Массачусетском технологическом институте, знаменитом МТИ, и поступив на работу в Bell Telephone Laboratories, Шокли, будучи исключительно амбициозным и честолюбивым человеком, энергично берется за дело. В 1938 году, в рабочей тетради 26-летнего Шокли появляется первый набросок полупроводникового триода. Идея проста и не отличается оригинальностью: сделать устройство, максимально похожее на электронную лампу, с тем лишь отличием, что электроны в нем будут протекать по тонкому нитевидному полупроводнику, а не пролетать в вакууме между катодом и анодом. Для управления током полупроводника предполагалось ввести дополнительный электрод (аналог сетки) - прикладывая к нему напряжение разной полярности. Таким образом, можно будет либо уменьшать, либо увеличивать количество электронов в нити и, соответственно, изменять ее сопротивление и протекающий ток. Все как в радиолампе, только без вакуума, без громоздкого стеклянного баллона и без подогрева катода. Вытеснение электронов из нити или их приток должен был происходить под влиянием электрического поля, создаваемого между управляющим электродом и нитью, то есть благодаря полевому эффекту. Для этого нить должна быть именно полупроводниковой. В металле слишком много электронов и никакими полями их не вытеснишь, а в диэлектрике свободных электронов практически нет. Шокли приступает к теоретическим расчетам, однако все попытки построить твердотельный усилитель ни к чему не приводят.

В то же время в Европе немецкие физики Роберт Поль и Рудольф Хилш создали на основе бромида калия работающий контактный трехэлектродный кристаллический усилитель. Тем не менее, никакой практической ценности немецкий прибор не представлял. У него была очень низкая рабочая частота. Есть сведения, что в первой половине 1930-х годов трехэлектродные полупроводниковые усилители «собрали» и два радиолюбителяканадец Ларри Кайзер и новозеландский школьник Роберт Адамс. Адамс, в дальнейшем ставший радиоинженером, замечал, что ему никогда не приходило в голову оформить патент на изобретение, так как всю информацию для своего усилителя он почерпнул из радиолюбительских журналов и других открытых источников.

К 1926–1930 гг. относятся работы Юлиуса Лилиенфельда (рис. 19), профессора Лейпцигского университета, который запатентовал конструкцию полупроводникового усилителя, в наше время известного под названием полевой транзистор (рис. 20).

Рис. 19. Юлиус Лилиенфельд

Рис. 20. Патент Ю. Лилиенфельда на полевой транзистор

Лилиенфельд предполагал, что при подаче напряжения на слабо проводящий материал будет меняться его проводимость и в связи с этим возникнет усиление электрических колебаний. Несмотря на получение патента, создать работающий прибор Лилиенфельд не сумел. Причина была самая прозаическая - в 30-х годах ХХ века еще не нашлось необходимого материала, на основе которого можно было бы изготовить работающий транзистор. Именно поэтому усилия большинства ученых того времени были направлены на изобретение более сложного биполярного транзистора. Таким образом, пытались обойти трудности, возникшие при реализации полевого транзистора.

Работы по твердотельному усилителю в Bell Telephone Laboratories прерываются с началом Второй мировой войны. Уильям Шокли и многие его коллеги откомандированы в распоряжение министерства обороны, где работают до конца 1945 года.

Твердотельная электроника не представляла интереса для военных - достижения им представлялись сомнительными. За одним исключением. Детекторы. Они-то как раз и оказались в центре исторических событий.

В небе над Ла-Маншем развернулась грандиозная битва за Британию, достигшая апогея в сентябре 1940 года. После оккупации Западной Европы Англия осталась один на один с армадой немецких бомбардировщиков, разрушающих береговую оборону и подготавливающих высадку морского десанта для захвата страны - операцию «Морской лев». Трудно сказать, что спасло Англию - чудо, решительность премьера Уинстона Черчилля или радиолокационные станции. Появившиеся в конце 30-х годов радары позволяли быстро и точно обнаруживать вражеские самолеты и своевременно организовывать противодействие. Потеряв в небе над Британией более тысячи самолетов, гитлеровская Германия сильно охладела к идее захвата Англии в 1940-м и приступила к подготовке блицкрига на Востоке.

Англии были нужны радары, радарам - кристаллические детекторы, детекторам - чистые германий и кремний. Первым, и в значительных количествах, на заводах и в лабораториях появился германий. С кремнием, из-за высокой температуры его обработки, сначала возникли некоторые трудности, но вскоре проблему решили. После этого предпочтение было отдано кремнию. Кремний был дешев по сравнению с германием. Итак, трамплин для прыжка к транзистору был практически готов.

Вторая мировая стала первой войной, в которой наука, по своей значимости для победы над врагом, выступила на равных с конкретными оружейными технологиями, а в чем-то и опередила их. Вспомним атомный и ракетный проекты. В этот список можно включить и транзисторный проект, предпосылки для которого были в значительной степени заложены развитием военной радиолокации.

Открытие

В послевоенные годы в Bell Telephone Laboratories начинают форсировать работы в области глобальной связи. Аппаратура 1940-х годов использовала для усиления, преобразования и коммутации сигналов в абонентских цепях два основных элемента: электронную лампу и электромеханическое реле. Эти элементы были громоздки, срабатывали медленно, потребляли много энергии и не отличались высокой надежностью. Усовершенствовать их значило вернуться к идее использования полупроводников. В Bell Telephone Laboratories вновь создается исследовательская группа (рис. 21), научным руководителем которой становится вернувшийся «с войны» Уильям Шокли. В команду входят Уолтер Браттейн, Джон Бардин, Джон Пирсон, Берт Мур и Роберт Гибни.

Рис. 21. г. Мюррей Хилл, штат Нью-Джерси, США, Bell Laboratories. Место рождение транзистора.

В самом начале команда принимает важнейшее решение: направить усилия на изучение свойств только двух материалов - кремния и германия, как наиболее перспективных для реализации поставленной задачи. Естественно, группа начала разрабатывать предвоенную идею Шокли - усилителя с эффектом поля. Но электроны внутри полупроводника упрямо игнорировали любые изменения потенциала на управляющем электроде. От высоких напряжений и токов кристаллы взрывались, но не желали изменять свое сопротивление.

Над этим задумался теоретик Джон Бардин. Шокли, не получив быстрого результата, охладел к теме и не принимал активного участия в работе. Бардин предположил, что значительная часть электронов на самом деле не «разгуливает» свободно по кристаллу, а застревает в каких-то ловушках у самой поверхности полупроводника. Заряд этих «застрявших» электронов экранирует прикладываемое извне поле, которое не проникает в объем кристалла. Вот так в 1947 году в физику твердого тела вошла теория поверхностных состояний. Теперь, когда, казалось, причина неудач найдена, группа начала более осмысленно реализовывать идею эффекта поля. Других идей просто не было. Стали различными способами обрабатывать поверхность германия, надеясь устранить ловушки электронов. Перепробовали все - химическое травление, механическую полировку, нанесение на поверхность различных пассиваторов. Кристаллы погружали в различные жидкости, но результата не было. Тогда решили максимально локализовать зону управления, для чего один из токопроводов и управляющий электрод изготовили в виде близко расположенных подпружиненных иголочек. Экспериментатор Браттейн, за плечами которого был 15-летний опыт работы с различными полупроводниками, мог по 25 часов в сутки крутить ручки осциллографа.

Теоретик Бардин всегда был рядом, готовый сутки напролет проверять свои теоретические выкладки. Оба исследователя, как говорится, нашли друг друга. Они практически не выходили из лаборатории, но время шло, а сколько-нибудь существенных результатов по-прежнему не было.

Однажды Браттейн, издерганный от неудач, сдвинул иголки почти вплотную, более того - случайно перепутал полярности прикладываемых к ним потенциалов. Ученый не поверил своим глазам. Он был поражен, но на экране осциллографа было явно видно усиление сигнала. Теоретик Бардин отреагировал молниеносно и безошибочно: эффекта поля никакого нет, и дело не в нем. Усиление сигнала возникает по другой причине. Во всех предыдущих оценках рассматривались только электроны, как основные носители тока в германиевом кристалле, а «дырки», которых было в миллионы раз меньше, естественно игнорировались. Бардин понял, что дело именно в «дырках». Введение «дырок» через один электрод (этот процесс назвали инжекцией) вызывает неизмеримо больший ток в другом электроде. И все это на фоне неизменности состояния огромного количества электронов.

Вот так, непредсказуемым образом, 19 декабря 1947 года на свет появился точечный транзистор (рис. 22).

Сначала новое устройство назвали германиевым триодом. Бардину и Браттейну название не понравилось. Не звучало. Они хотели, чтобы название заканчивалось бы на «тор», по аналогии с резистором или термистором. Здесь им на помощь приходит инженер-электронщик Джон Пирс, который прекрасно владел словом (в дальнейшем он станет известным популяризатором науки и писателем-фантастом под псевдонимом J. J. Coupling). Пирс вспомнил, что одним из параметров вакуумного триода служит крутизна характеристики, по-английски - transconductance. Он предложил назвать аналогичный параметр твердотельного усилителя transresistance, а сам усилитель, а это слово просто вертелось на языке, - транзистором. Название всем понравилось.

Через несколько дней после замечательного открытия, в канун Рождества, 23 декабря 1947 года состоялась презентация транзистора руководству Bell Telephone Laboratories (рис. 23).

Рис. 23. Точечный транзистор Бардина-Браттейна

Уильям Шокли, который проводил отпуск в Европе, срочно возвратился в Америку. Неожиданный успех Бардина и Браттейна глубоко задевает его самолюбие. Он раньше других задумался о полупроводниковом усилителе, возглавил группу, выбрал направление исследований, но на соавторство в «звездном» патенте претендовать не мог. На фоне всеобщего ликования, блеска и звона бокалов с шампанским Шокли выглядел разочарованным и мрачным. И тут происходит нечто, что всегда будет скрыто от нас пеленой времени. За одну неделю, которую впоследствии Шокли назовет своей «страстной неделей», он создает теорию транзистора с p-n-переходами, заменившими экзотические иголочки, и в новогоднюю ночь изобретает плоскостной биполярный транзистор. (Заметим, что реально работающий биполярный транзистор был изготовлен только в 1950 году.)

Предложение принципиальной схемы более эффективного твердотельного усилителя со слоеной структурой уравняло Шокли в правах на открытие транзисторного эффекта с Бардиным и Браттейном.

Через полгода, 30 июня 1948-го, в Нью-Йорке, в штаб-квартире Bell Telephone Laboratories, после улаживания всех необходимых патентных формальностей, прошла открытая презентация транзистора. В то время уже началась холодная война между США и Советским Союзом, поэтому технические новинки прежде всего оценивались военными. К удивлению всех присутствующих, эксперты из Пентагона не заинтересовались транзистором и порекомендовали использовать его в слуховых аппаратах.

Через несколько лет новое устройство стало незаменимым компонентом в системе управления боевыми ракетами, но именно в тот день близорукость военных спасла транзистор от грифа «совершенно секретно».

Журналисты отреагировали на изобретение тоже без особых эмоций. На сорок шестой странице в разделе «Новости радио» в газете «Нью-Йорк Таймс» была напечатана краткая заметка об изобретении нового радиотехнического устройства. И только.

В Bell Telephone Laboratories не ожидали такого развития событий. Военных заказов с их щедрым финансированием не предвиделось даже в отдаленной перспективе. Срочно принимается решение о продаже всем желающим лицензий на транзистор. Сумма сделки - $25 тыс. Организовывается учебный центр, проводятся семинары для специалистов. Результаты не заставляют себя ждать (рис. 24).

Транзистор быстро находит применение в самых различных устройствах - от военного и компьютерного оборудования до потребительской электроники. Интересно, что первый портативный радиоприемник долгое время так и называли - транзистор.

Европейский аналог

Работы по созданию трехэлектродного полупроводникового усилителя велись и по другую сторону океана, но о них известно намного меньше.

Совсем недавно бельгийский историк Арманд Ван Дормел и профессор Стэнфордского университета Майкл Риордан обнаружили, что в конце 1940-х годов в Европе был изобретен и даже запущен в серию «родной брат транзистора» Бардина-Браттейна.

Европейских изобретателей точечного транзистора звали Герберт Франц Матаре и Генрих Иоганн Велкер (рис. 25). Матаре был физиком-экспериментатором, работал в немецкой фирме Telefunken и занимался микроволновой электроникой и радиолокацией. Велкер больше был теоретиком, долгое время преподавал в Мюнхенском университете, а в военные годы трудился на люфтваффе.

Рис. 25. Изобретатели транзитрона Герберт Матаре и Генрих Велкер

Встретились они в Париже. После разгрома фашистской Германии оба физика были приглашены в европейский филиал американской корпорации Westinghouse.

Еще в 1944 году Матаре, занимаясь полупроводниковыми выпрямителями для радаров, сконструировал прибор, который назвал дуодиодом. Это была пара работающих параллельно точечных выпрямителей, использующих одну и ту же пластинку германия. При правильном подборе параметров устройство подавляло шумы в приемном блоке радара. Тогда Матаре обнаружил, что колебания напряжения на одном электроде могут обернуться изменением силы тока, проходящего через второй электрод. Заметим, что описание подобного эффекта содержалось еще в патенте Лилиенфельда, и не исключено, что Матаре знал об этом. Но как бы там ни было, он заинтересовался наблюдаемым явлением и продолжал исследования.

Велкер пришел к идее транзистора с другой стороны, занимаясь квантовой физикой и зонной теорией твердого тела. В самом начале 1945 года он создает схему твердотельного усилителя, очень похожего на устройство Шокли. В марте Велкер успевает его собрать и испытать, но ему повезло не больше, чем американцам. Устройство не работает.

В Париже Матаре и Велкеру поручают организовать промышленное производство полупроводниковых выпрямителей для французской телефонной сети. В конце 1947 года выпрямители запускаются в серию, и у Матаре с Велкером появляется время для возобновления исследований. Они приступают к дальнейшим экспериментам с дуодиодом. Вдвоем они изготавливают пластинки из гораздо более чистого германия и получают стабильный эффект усиления. Уже в начале июня 1948 года Матаре и Велкер создают стабильно работающий точечный транзистор. Европейский транзистор появляется на полгода позже, чем устройство Бардина и Браттейна, но абсолютно независимо от него. О работе американцев Матаре и Велкер не могли ничего знать. Первое упоминание в прессе о «новом радиотехническом устройстве», вышедшем из Bell Laboratories, появилось только 1 июля.

Дальнейшая судьба европейского изобретения сложилась печально. Матаре и Велкер в августе подготовили патентную заявку на изобретение, но французское бюро патентов очень долго изучало документы. Только в марте 1952 года они получают патент на изобретение транзитрона - такое название выбрали немецкие физики своему полупроводниковому усилителю. К тому времени парижский филиал Westinghouse уже начал серийное производство транзитронов. Основным заказчиком выступало Почтовое министерство. Во Франции строилось много новых телефонных линий. Тем не менее, век транзитронов был недолог. Несмотря на то, что они работали лучше и дольше своего американского «собрата» (за счет более тщательной сборки), завоевать мировой рынок транзитроны не смогли. Впоследствии французские власти вообще отказались субсидировать исследования в области полупроводниковой электроники, переключившись на более масштабные ядерные проекты. Лаборатория Матаре и Велкера приходит в упадок. Ученые принимают решение вернуться на родину. К тому времени в Германии начинается возрождение науки и высокотехнологичной промышленности. Велкер устраивается на работу в лабораторию концерна Siemens, которую впоследствии возглавит, а Матаре переезжает в Дюссельдорф и становится президентом небольшой компании Intermetall, выпускающей полупроводниковые приборы.

Послесловие

Если проследить судьбы американцев, то Джон Бардин ушел из Bell Telephone Labora-tories в 1951 году, занялся теорией сверхпроводимости и в 1972 году вместе с двумя своими учениками был удостоен Нобелевской премии «За разработку теории сверхпроводимости», став, таким образом, единственным в истории ученым, дважды нобелевским лауреатом.

Уолтер Браттейн проработал в Bell Telephone Laboratories до выхода на пенсию в 1967 году, а затем вернулся в свой родной город и занялся преподаванием физики в местном университете.

Судьба Уильяма Шокли сложилась следующим образом. Он покидает Bell Telephone Laboratories в 1955 году и, при финансовой помощи Арнольда Бекмана, основывает фирму по производству транзисторов - Shockly Transistor Corporation. На работу в новую компанию переходят многое талантливые ученые и инженеры, но через два года большинство из них уходят от Шокли. Заносчивость, высокомерие, нежелание прислушиваться к мнению коллег и навязчивая идея не повторить ошибку, которую он допустил в работе с Бардиным и Браттейном, делают свое дело. Компания разваливается.

Его бывшие сотрудники Гордон Мур и Роберт Нойс при поддержке того же Бекмана основывают фирму Fairchild Semiconductor, а затем, в 1968 году создают собственную компанию - Intel.

Мечта Шокли построить полупроводниковую бизнес-империю была претворена в жизнь другими (рис. 26), а ему опять досталась роль стороннего наблюдателя. Ирония судьбы заключается в том, что еще в 1952 году именно Шокли предложил конструкцию полевого транзистора на основе кремния. Тем не менее, компания Shockly Transistor Corporation не выпустила ни одного полевого транзистора. Сегодня это устройство является основой всей компьютерной индустрии.

Рис. 26. Эволюция транзистора

После неудачи в бизнесе Шокли становится преподавателем в Стэндфордском университете. Он читает блестящие лекции по физике, лично занимается с аспирантами, но ему не хватает былой славы - всего того, что американцы называют емким словом publicity. Шокли включается в общественную жизнь и начинает выступать с докладами по многим социальным и демографическим вопросам. Предлагая решения острых проблем, связанных с перенаселением азиатских стран и национальными различиями, он скатывается к евгенике и расовой нетерпимости. Пресса, телевидение, научные журналы обвиняют его в экстремизме и расизме. Шокли снова «знаменит» и, похоже, испытывает удовлетворение от всего происходящего. Его репутации и карьере ученого приходит конец. Он выходит на пенсию, перестает со всеми общаться, даже с собственными детьми, и доживает жизнь затворником.

Разные люди, разные судьбы, но всех их объединяет причастность к открытию, коренным образом изменившему наш мир.

Дату 19 декабря 1947 года можно по праву считать днем рождения новой эпохи. Начался отсчет нового времени. Мир шагнул в эру цифровых технологий.

Литература

  1. William F. Brinkman, Douglas E. Haggan, William W. Troutman. A History of the Invention of the Transistor and Where it will lead us // IEEE Journal of Solid-State Circuits. Vol.32, No.12. December 1997.
  2. Hugo Gernsback. A Sensational Radio Invention // Radio News. September 1924.
  3. Новиков М. А. Олег Владимирович Лосев - пионер полупроводниковой электроники // Физика твердого тела. 2004. Том 46, вып. 1.
  4. Остроумов Б., Шляхтер И. Изобретатель кристадина О. В. Лосев. // Радио. 1952. № 5.
  5. Жирнов В., Суэтин Н. Изобретение инженера Лосева // Эксперт. 2004. № 15.
  6. Lee T. H., A Nonlinear History of Radio. Cambridge University Press. 1998.
  7. Носов Ю. Парадоксы транзистора // Квант. 2006. № 1.
  8. Andrew Emmerson. Who really invented Transistor? www.radiobygones.com
  9. Michael Riordan. How Europe Missed the Transistor // IEEE Spectrum, Nov. 2005. www.spectrum.ieee.org

О вкладе советских и российских ученых в разработку полупроводниковых транзисторов

Открывая осенний форум Intel для разработчиков (IDF) в Сан-Франциско (www.pcweek.ru/themes/detail.php?ID=102444), старший вице-президент и генеральный менеджер подразделения Digital Enterprise Group корпорации Патрик Гелсингер отметил, что 2007-й стал юбилейным не только для Intel (отметившей десятилетие IDF), но и для всей полупроводниковой отрасли: как признано международным сообществом, 60 лет назад американцы У. Шокли, В. Браттейн и Дж. Бардин изобрели первый транзистор. А между тем в этой сфере есть чем гордиться и российским ученым и инженерам.

Когда и где именно начался “путь к транзистору”, сказать не просто. Его конкретному созданию предшествовал длительный и весьма насыщенный период исследований в области электроники, научных экспериментов и разработок во многих странах. Разумеется, СССР не был исключением. Началом отечественных разработок в этом направлении можно считать труды физика А. Г. Столетова в сфере фотоэффекта и А. С. Попова по созданию радиопередающих устройств еще в конце XIX в. Развитие электроники в советское время стимулировалось бурным прогрессом радиотехники в двадцатые годы, немалую роль в котором играли разработки сверхмощных (для того времени) радиоламп, ламповых триггеров и других элементов, выполненные М. А. Бонч-Бруевичем. Одним из факторов, определивших бурное развитие данного направления, стал общий подъем науки и образования в стране.

Историки науки знают, что уровень советских исследований и разработок по всему диапазону вопросов электроники часто превосходил мировой и никогда не опускался ниже него. Это обуславливалось “взрывным” характером научного прогресса в СССР и тем, что на развитии науки во многих западных странах весьма негативно сказались период послевоенной (1914 -1918 гг.) депрессии, а позже и жестокий экономический кризис 1929 -1934 гг.

Одной из первых заинтересовавших экспериментаторов проблем стала односторонняя проводимость в точке соприкосновения металлической пружины и кристаллов полупроводника: требовалось понять причины этого явления.

Советский инженер-радиофизик О. В. Лосев, экспериментировавший в 1922 г. со слаботочной техникой (работающей при напряжениях до 4 В), открыл явление возникновения электромагнитных колебаний и эффект их усиления в полупроводниковом кристаллическом детекторе. Он обнаружил у кристалла падающий участок вольт-амперной характеристики и первым построил генерирующий детектор, т. е. детекторный приемник, способный усиливать электромагнитные колебания. Свой прибор Лосев основал на контактной паре металлического острия и кристалла цинкита (оксида цинка), на которую подавалось небольшое напряжение. Прибор Лосева вошел в историю полупроводниковой электроники как “кристадин”. Примечательно, что продолжение исследований в этом направлении привело к созданию в 1958 г. туннельных диодов, нашедших применение в вычислительной технике 60-х годов ХХ века. Лосев первым открыл и новое явление — свечение кристаллов карборунда при прохождении тока через точечный контакт. Ученый объяснил это явление существованием в детектирующем контакте некоторого “активного слоя” (впоследствии названного p-n-переходом, от p - positive, n - negative).

В 1926 г. советский физик Я. И. Френкель выдвинул гипотезу о дефектах кристаллической структуры полупроводников, названных “пустыми местами”, или, более привычно, “дырками”, которые могли перемещаться по кристаллу. В 1930-е годы академик А. Ф. Иоффе начал эксперименты с полупроводниками в Ленинградском институте инженерной физики.

В 1938 г. украинский академик Б. И. Давыдов и его сотрудники предложили диффузионную теорию выпрямления переменного тока посредством кристаллических детекторов, в соответствии с которой оно имеет место на границе между двумя слоями проводников, обладающих p- и n- проводимостью. Далее эта теория была подтверждена и развита в исследованиях В. Е. Лашкарева, проведенных в Киеве в 1939-1941 гг. Он установил, что по обе стороны “запорного слоя”, расположенного параллельно границе раздела медь - оксид меди, находятся носители тока противоположных знаков (явление p-n-перехода), а также что введение в полупроводники примесей резко повышает их способность проводить электрический ток. Лашкарев открыл и механизм инжекции (переноса носителей тока) - явления, составляющего основу действия полупроводниковых диодов и транзисторов.

Его работа была прервана начавшейся войной, однако по ее окончании Лашкарев вернулся в Киев и в 1946 г. возобновил исследования. Вскоре он открыл биполярную диффузию неравновесных носителей тока в полупроводниках, а в начале 1950-х изготовил первые точечные транзисторы в лабораторных условиях. То, что результаты их опытной эксплуатации были обнадеживающими, подтверждается следующим любопытным эпизодом.

Пионер советской вычислительной техники - академик С. А. Лебедев, создавший в Киеве первую советскую ЭВМ МЭСМ (1949-1951) и основавший там научную школу, приезжал в Киев в день своего 50-летия (2 ноября 1952 г.). Там он услышал о транзисторах Лашкарева и, игнорируя подготовленные в его честь торжества (а Лебедев вообще не любил никакого официоза, справедливо полагая его пустой тратой времени), отправился прямиком в лабораторию при Институте физики АН Украинской ССР. Познакомившись с Лашкаревым и его разработками, Лебедев предложил сопровождавшему его аспиранту А. Кондалеву начать проектирование ряда устройств ЭВМ на базе новых транзисторов и диодов, что тот и сделал после трехмесячной стажировки у Лашкарева. (Об этом случае автору рассказал другой аспирант Лебедева - ныне академик Украины Б. Н. Малиновский, также присутствовавший при встрече и впоследствии включившийся в упомянутую работу.) Правда, сведения о каком-либо промышленном развитии этого проекта - по крайней мере в гражданской области - отсутствуют, но это и понятно: массового производства транзисторов в те годы еще не существовало.

Широкое применение транзисторов во всем мире началось позже. Тем не менее научные заслуги Лашкарева были оценены: он возглавил новый Институт полупроводников АН Украины, который был открыт в 1960 г.

Предложенная Давыдовым теория p-n-перехода впоследствии была развита У. Шокли в США. В 1947 г. В. Браттейн и Дж. Бардин, работавшие под руководством Шокли, открыли транзисторный эффект в детекторах, основанных на кристаллах германия. (Любопытно, что их эксперименты походили на довоенные опыты немецкого электротехника Р. В. Поля, создавшего в 1937 г. совместно с Р. Хильшем усилитель на базе монокристалла бромида галлия.) В 1948 г. были опубликованы результаты исследований Шокли и изготовлены первые германиевые транзисторы с точечным контактом. Разумеется, они были весьма далеки от совершенства. К тому же их конструкция еще носила черты лабораторной установки (что, впрочем, характерно для начального периода использования любого подобного изобретения). Характеристики первых транзисторов отличались неустойчивостью и непредсказуемостью, и поэтому их реальное практическое применение началось уже после 1951 г., когда Шокли создал более надежный транзистор - планарный, состоявший из трех слоев германия типа n-p-n суммарной толщиной 1 см. За открытия в области полупроводников и изобретение транзистора Шокли, Бардин и Браттейн в 1956 г. разделили Нобелевскую премию по физике (интересно, что Бардин - единственный физик, удостоенный Нобелевской премии дважды: второй раз - в 1972 г. за разработку теории сверхпроводимости).

В СССР работа по транзисторам велась почти в таком же темпе, что и за рубежом. Параллельно с киевской лабораторией Лашкарева исследовательская группа московского инженера А. В. Красилова в 1948 г. создала германиевые диоды для радиолокационных станций. В феврале 1949-го Красилов и его помощница С. Г. Мадоян (в то время студентка Московского химико-технологического института, выполнявшая дипломную работу по теме “Точечный транзистор”) впервые наблюдали транзисторный эффект. Правда, первый лабораторный образец работал не более часа, а затем требовал новой настройки. Тогда же Красилов и Мадоян опубликовали первую в Советском Союзе статью о транзисторах, называвшуюся “Кристаллический триод”.

Приблизительно в то же время точечные транзисторы были разработаны и в других лабораториях страны. Так, в 1950 г. экспериментальные образцы германиевых транзисторов были созданы в Физическом институте Академии наук (Б. М. Вулом, А. В. Ржановым, В. С. Вавиловым и др.) и Ленинградском физико-техническом институте (В. М. Тучкевичем, Д. Н. Наследовым).

В 1953 г. был организован первый в СССР институт полупроводников (ныне - НИИ “Пульсар”). Туда была переведена лаборатория Красилова, в которой Мадоян разработала первые сплавные германиевые транзисторы. Их развитие связано с расширением частотного предела и повышением КПД транзистора. Соответствующие работы проводились совместно с лабораторией профессора С. Г. Калашникова в ЦНИИ-108 (ныне ГосЦНИРТИ): начинался новый период, характеризуемый сотрудничеством различных организаций, специализировавшихся в полупроводниковой области. В конце же 1940-х одинаковые открытия часто делались независимо друг от друга, а их авторы не имели информации о достижениях своих коллег. Причиной такой “научной параллельности” была секретность исследований в области электроники, имевшей оборонное значение. Подобная картина наблюдалась и при создании первых электронных компьютеров - будущих потребителей транзисторов. Например, С. А. Лебедев, начиная работу над своей первой ЭВМ в Киеве, не подозревал, что в это же время в Москве академик И. С. Брук со своими помощниками также трудились над проектом электронной цифровой вычислительной машины.

Впрочем, секретность отнюдь не была некой “советской особенностью”: оборонные разработки засекречиваются во всем мире. Изобретение транзистора тоже было строго засекречено фирмой Bell (где в то время работал Шокли), и первое сообщение о нем появилось в печати только 1 июля 1948 г.: в небольшой заметке газеты The New York Times, в которой без лишних подробностей сообщалось о создании подразделением Bell Telephone Laboratories твердотельного электронного прибора, заменявшего электронную лампу.

С образованием сети специальных научно-исследовательских организаций развитие транзисторов постоянно ускорялось. В начале 1950-х в НИИ-160 Ф. А. Щиголь и Н. Н. Спиро ежедневно выпускали десятки точечных транзисторов типа С1-С4, а М. М. Самохвалов разрабатывал в НИИ-35 новые решения по групповой технологии, технологии “вплавления - диффузии” для получения тонкой базы ВЧ-транзисторов. В 1953 г. на основе исследований термоэлектрических свойств полупроводников А. Ф. Иоффе создал серию термоэлектрогенераторов, а в НИИ-35 были изготовлены планарные транзисторы П1, П2, П3. Вскоре в лаборатории С. Г. Калашникова был получен германиевый транзистор для частот 1,0 - 1,5 МГц, а Ф. А. Щиголь сконструировал кремниевые сплавные транзисторы типа П501-П503.

В 1957 г. советская промышленность выпустила 2,7 млн. транзисторов. Начавшееся создание и развитие ракетной и космической техники, а затем и вычислительных машин, а также потребности приборостроения и других отраслей экономики полностью удовлетворялись транзисторами и другими электронными компонентами отечественного производства.

Транзистор изготавливается на основе полупроводников. Долгое время их не признавали, используя для создания различных устройств только проводники и диэлектрики. Подобные устройства имели множество недостатков: низкий КПД, высокое энергопотребление и недолговечность. Изучение свойств полупроводников стало переломным моментом в истории электроники.

Электронная проводимость различных веществ

Все вещества по своей способности проводить электрический ток делятся на три большие группы: металлы, диэлектрики и полупроводники. Диэлектрики названы так потому, что практически не способны проводить ток. Металлы обладают лучшей проводимостью благодаря наличию в них свободных электронов, которые хаотически движутся среди атомов. При приложении внешнего электрического поля эти электроны начнут двигаться в сторону положительного потенциала. По металлу пройдет ток.

Полупроводники способны проводить ток хуже металлов, но лучше диэлектриков. В таких веществах существуют основные (электроны) и неосновные (дырки) носители электрического заряда. Что ? Это отсутствие одного электрона на внешней атомной орбитали. Дырка способна перемещаться по материалу. С помощью специальных примесей, донорных или акцепторных, можно существенно увеличивать количество электронов и дырок в исходном веществе. N-полупроводник можно получить, создав избыток электронов, а p-проводник - с помощью избытка дырок.

Диод и транзистор

Диод - это прибор, полученный соединением n- и p-полупроводников. Он сыграл огромную роль в развитии радиолокации в 40 годах прошлого века. Изучением его возможностей активно занималась команда сотрудников американской фирмы Bell во главе с У.Б. Шоккли. Эти люди в 1948 году, присоединив к кристаллу два контакта. На концах кристалла находились крошечные медные острия. Возможности такого прибора совершили настоящую революцию в электронике. Было выяснено, что током, проходящим через второй контакт можно управлять (усиливать или ослаблять его) при помощи входного тока первого контакта. Это было возможно при условии, что кристалл германия намного тоньше, чем медные острия.

Первые транзисторы имели несовершенную конструкцию и довольно слабые характеристики. Несмотря на это, они были гораздо лучше электронных ламп. За это изобретение Шоккли и его команда удостоились Нобелевской премии. Уже в 1955 году появились диффузионные транзисторы, которые по своим характеристикам превосходили германиевые в несколько раз.

Начиная с 1947 г. в СССР начались интенсивно вестись работы в области полупроводниковых усилителей - в ЦНИИ-108 (лаб. С. Г. Калашникова) и в НИИ-160 (НИИ «Исток», Фрязино, лаб. А. В. Красилова). 15 ноября 1948 года в журнале «Вестник информации» А.В. Красилов опубликовал статью «Кристаллический триод». Это была первая публикация в СССР о транзисторах.

Таким образом, первый советский транзистор в СССР был создан независимо от работы американских учёных. Напомним, что 16 декабря 1947 года в американской компании Bell Labs был создан первый в мире транзистор, а в июле 1948 года, на 4 месяца раньше советской публикации, информация об этом изобретении появилась в журнале «The Physical Review».


В серийное производство первые советские германиевые триоды С1-С4 (термин «транзистор» в СССР вошёл в обиход в 1960-е годы) были запущены лабораторией Красилова уже в 1949 г. В 1950 г. образцы германиевых триодов были разработаны в ФИАНе (Б.М. Вул, А. В. Ржанов, В. С. Вавилов и др.), в ЛФТИ (В.М. Тучкевич, Д. Н. Наследов) и в ИРЭ АН СССР (С.Г. Калашников, Н. А. Пенин и др.). На тот момент советские транзисторы были ничем не хуже импортных транзисторов.

Естественно, транзисторы появились не на пустом месте – этому предшествовали годы исследований.
В 1926 г. советский физик Я. И. Френкель выдвинул гипотезу о дефектах кристаллической структуры полупроводников, названных "пустыми местами", или, более привычно, "дырками", которые могли перемещаться по кристаллу. В 1930-е годы академик А. Ф. Иоффе начал эксперименты с полупроводниками в Ленинградском институте инженерной физики.
В 1938 г. украинский академик Б. И. Давыдов и его сотрудники предложили диффузионную теорию выпрямления переменного тока посредством кристаллических детекторов, в соответствии с которой оно имеет место на границе между двумя слоями проводников, обладающих p- и n- проводимостью. Далее эта теория была подтверждена и развита в исследованиях В.Е. Лашкарева, проведенных в Киеве в 1939-1941 гг. Он установил, что по обе стороны "запорного слоя", расположенного параллельно границе раздела медь - оксид меди, находятся носители тока противоположных знаков (явление p-n-перехода), а также что введение в полупроводники примесей резко повышает их способность проводить электрический ток. Лашкарев открыл и механизм инжекции (переноса носителей тока) - явления, составляющего основу действия полупроводниковых диодов и транзисторов.
Эти исследования были прерваны войной. Однако война же остро поставила вопрос о необходимости развития советской электронной промышленности. В частности, необходимо было развивать радиолокацию.

К началу войны Ленинградский радиозавод успел выпустить всего 45 комплектов «радиоулавливателя самолетов» РУС-1. Первые два военных года радиолокационные станции в СССР больше не выпускались. 4 июля 1943 года Государственным комитетом Обороны было принято постановление «О радиолокации».


ГОСУДАРСТВЕННЫЙ КОМИТЕТ ОБОРОНЫ
ПОСТАНОВЛЕНИЕ № ГОКО-3683сс
4 июля 1943 года. Москва. Кремль

О радиолокации
Учитывая исключительно важное значение радиолокации для повышения боеспособности Красной Армии и Военно-Морского Флота, Государственный Комитет Обороны постановляет:
1. Создать при Государственном Комитете Обороны Совет по радиолокации
Возложить на Совет по радиолокации при ГОКО следующие задачи:
а) подготовку проектов военно-технических заданий ГОКО для конструкторов по вопросам системы вооружения средствами радиолокации Красной Армии и Военно-Морского Флота;
б) всемерное развитие радиолокационной промышленности и техники, обеспечение создания новых средств радиолокации и усовершенствования существующих типов радиолокаторов, а также обеспечение серийного выпуска промышленностью высококачественных радиолокаторов;
в) привлечение к делу радиолокации наиболее крупных научных, конструкторских и инженерно-технических сил, способных двигать вперед радиолокационную технику;
г) систематизацию и обобщение всех достижений науки и техники в области радиолокации, как в СССР, так и за границей, путем использования научно-технической литературы и всех источников информации;
д) подготовку предложений для ГОКО по вопросам импорта средств радиолокации.
2. Утвердить Совет по радиолокации в следующем составе: тт. Маленков (председатель), Архипов, Берг, Голованов, Горохов, Данилин, Кабанов, Калмыков, Кобзарев, Стогов, Тереньтьев, Угер, Шахурин, Щукин.
3. Поставить перед Советом по радиолокации в качестве ближайших задач:
а) обеспечение улучшения качества и увеличения серийного производства выпускаемых промышленностью следующих радиолокаторов – установки обнаружения, опознавания самолетов и наведения на них истребительной авиации в системе ПВО – "Пегматит – 3" и "Редут" с высотной приставкой; станции орудийной наводки СОН для обеспечения стрельбы зенитных дивизионов в системе ПВО; самолетных радиолокационных установок радионаведения для двухмоторных самолетов "Гнейс – 2"; радиолокационных приборов опознавания самолетов и кораблей "свой – чужой".
б) Обеспечение создания и испытания опытных образцов и подготовки серийного производства следующих радиолокаторов – установки наведения прожекторов для ведения заградительного огня зенитной артиллерией в системе ПВО; станции орудийной наводки СОН – 3 для обеспечения стрельбы зенитным дивизионом в системе ПВО; радиолокационной установки для наведения на цель бомбардировочной авиации дальнего действия; радиолокационной установки наведения для одномоторного истребителя; универсальной морской установки обнаружения для всех типов кораблей, включая подводные лодки и торпедные катера; корабельной и береговой установки для обнаружения и обеспечения стрельбы главным калибром надводных кораблей и береговых батарей в любых условиях видимости.
4. В целях обеспечения новых разработок и серийного производства радиолокаторов современными высококачественными электровакуумными изделиями, создать Электровакуумный институт с опытным заводом. .
Разместить Электровакуумный институт на площади завода № 747 НКЭП
Утвердить начальником Электровакуумного института т. Векшинского С.А.
6. Для решения задач комплексного проектирования радиолокационного оборудования объектов, разработки тактико-технических заданий на радиолокационные приборы и координации работ отделов главных конструкторов заводов радиолокационной промышленности, организовать Проектно-Конструкторское Бюро по радиолокации.
Утвердить начальником Проектно-Конструкторского Бюро по радиолокации т. Попова Н.Л.
7.Организовать в Наркомате электропромышленности Главное управление радиолокационной промышленности в составе:
а) Всесоюзного научно-исследовательского института радиолокации;
б) Электровакуумного института;
в) Проектно-Конструкторского Бюро;
г) заводов Наркомэлектропрома №№ 465, 747, 498, 208 и 830.
7. Утвердить т. Берга А.И. заместителем наркома электропромышленности по вопросам радиолокации.
8. Восстановить в Московском энергетическом институте факультет радиотехники.
9. Обязать Главное управление трудовых резервов при СНК СССР (тт. Москатов и Зеленко) совместно с ЦК ВЛКСМ (т. Михайлов) организовать 15 ремесленных училищ с контингентом учащихся 10 тысяч человек с целью подготовки в этих училищах квалифицированных рабочих кадров для заводов радиолокационной промышленности.
10. Установить для крупных научных, конструкторских и инженерно-технических работников по радиолокации 30 персональных окладов в размере до 5 000 рублей каждый и 70 окладов в размере до 3 000 рублей.
11. Разрешить председателю Совета по радиолокации утвердить штаты аппарата Совета.
12. Обязать Совет по радиолокации совместно с Госпланом при СНК СССР (т. Вознесенский), Наркомэлектропромом (т. Кабанов), Наркомавиапромом (т. Шахурин), Наркомминвооружения (т. Паршин) Наркомсудпромом (т. Носенко), Наркомсредмашем (т. Акопов), Наркомвооружения (т. Устинов) и 15 июля с.г. представить на утверждение Государственного Комитета Обороны предложения о мероприятиях по организации производства радиолокационной аппаратуры.

Председатель Государственного Комитета Обороны И. Сталин

Созданный согласно этому постановлению Всесоюзного научно-исследовательского института радиолокации получил название ЦНИИ-108(ныне «ЦНИРТИ им. академика А.И. Берга»). Его руководителем стал А.И. Берг. Институт занимался созданием радиолокаторов и методов борьбы с ними. Сотрудник этого НИИ, руководитель лаборатории, Сергей Григорьевич Калашников, в дальнейшем создал первый систематический курс физики полупроводников в СССР и читал лекции в университете.

6 августа того же 1943 года было принято постановление о создании в городе Фрязино на базе заводе «Радиолампа»(завод N747) НИИ-160 (в дальнейшем назывался НИИ Электронной техники, НИИ «Исток», НПО «Исток», ГНПП "Исток"). Перед этим НИИ была поставлена задача создания электровакуумных приборов для радиолокационных станций.

Директором НИИ был назначен опытный инженер и изобретатель Сергей Аркадьевич Векшинский, бывший начальник Отраслевой вакуумной лаборатории (ОВЛ), эвакуированной из Ленинграда в Новосибирск, и бывший главный инженер «Светланы», а с 1940 г. начальник Спецбюро по металлографии, эвакуированного во Фрязино, а затем в Новосибирск. Менее года пробыл он директором НИИ-160, но самой ценной его заслугой было привлечение сюда ряд работников своего Спецбюро, а также самых ценных работников ОВЛ во главе с ее начальником С.А. Зусмановским (он был назначен заместителем Векшинского по научной части). Среди них были Ю. А. Юноша, В. И. Егиазаров, Г. А. Шустин, С. А. Зусмановский, К. П. Шахов, А. В. Красилов, В. С. Лукошков, Т.Б. Фогельсон и др. Вместе с сотрудниками «Светланы» эти ленинградцы стали золотым фондом института.

Институты НИИ-160 и ЦНИИ-108 активно сотрудничали, в частности в решении проблемы повышения выходной мощности и рабочих частот транзисторов, и в результате родилась идея нового технологического процесса "сплавления-диффузии", на основе которой появились серийные германиевые транзисторы П401-П403 и П410, П411. Но в 1957 году А.И.Берг создал в Академии наук СССР новый Институт радиоэлектроники, который сам же и возглавил, сотрудники, занимавшиеся полупроводниковыми приборами, перешли туда, и в ЦНИИ-108 это направление было свернуто.

В Советском Союзе первая НИР по транзисторам была поставлена в НИИ-160 (в дальнейшем - НИИ «Исток») в декабре 1948 г. Работа была выполнена Сусанной Мадоян - дипломницей Химико-технологического института им. Д.И. Менделеева под руководством А.В. Красилова.

Александр Викторович Красилов по праву считается патриархом отечественной полупроводниковой электроники. Родился 14 сентября 1910 г. Окончил Киевский политехнический институт. Начал трудовую деятельность в 1932 году на заводе "Светлана" г. Ленинград.

Принимал активное участие в развитии вакуумной электроники. В период Великой Отечественной войны участвовал в создании радиолампового завода в Новосибирске. Был командирован в США с целью заказа оборудования для вакуумной промышленности, где знакомился с работами ведущих электронных фирм того времени: "Дженерал-Электрик", "Вестингауз", "Ар-СИ-Эй", "Хьюлет-Паккард", "Вестон".

Под его руководством в НИИ "Исток" разработаны и внедрены в производство несколько серий микроволновых кремниевых детекторов сантиметрового и миллиметрового диапазонов, обеспечивающих нужды радиолокации, радиоприборостроения и СВЧ измерительной техники. Одновременно был разработан комплекс аппаратуры для измерения всех электрических параметров детекторов, включая измерения на сверхвысоких частотах. За эти работы А. В. Красилову в 1949 г. была присуждена Сталинская премия.

С августа 1953 г. А. В. Красилов - начальник отдела НИИ-35 (НИИ "Пульсар"). За более чем 20-летний срок пребывания на этой должности руководил разработкой, усовершенствованием, исследованием и внедрением в производство на опытном заводе НИИ и на девяти заводах в разных частях страны сотен типов германиевых диодов, транзисторов, туннельных диодов. В процессе этих работ были изучены основные свойства германия, способы его обработки, принципы конструирования приборов, методы их испытаний, пути достижения необходимой герметичности и надежности, в том числе для работы в особых условиях.

А. В. Красилов - автор ряда новых направлений конструирования и изготовления полупроводниковых приборов, таких как методы диффузии легирующих примесей в кристаллы германия и кремния, метод эпитаксиального наращивания, методы пиролитического разложения соединений германия, кремния и металлов, методы травления полупроводниковых приборов и многие другие основополагающие методы технологии.


Сусанна Гукасовна
Мадоян. 1950 г.

Сусанна Гукасовна Мадоян родилась 24 июня 1925 г. в городе Батуми в Грузии.
В 1944 году с отличием закончила школу и поступила в Московский химико-технологический институт им. Менделеева. Как уже писалось выше, свою дипломную работу «Исследование материалов для кристаллического триода» писала в НИИ-160 под руководством А.В. Красилова.

Создание точечных транзисторов было началом её трудовой деятельности, однако вскоре пришлось переключиться на разработку и изготовление диодов для развивающейся вычислительной техники.


В 1953 году она вместе с А.В. Красиловым перешла на работу в открывшийся НИИ полупроводниковой электроники (НИИ-35, ныне «Пульсар»). В том же году С.Г. Мадоян создала первый в Союзе опытный образец плоскостного (по тогдашней терминологии - слоистого) германиевого транзистора. Эта разработка стала основой серийных приборов типа П1, П2, П3 и их дальнейших модификаций.
В конце 1960 года С.Г. Мадоян защитила диссертацию на степень кандидата технических наук и начала цикл новых работ по созданию СВЧ приборов – туннельных диодов, основанных не только на германии, но и на появившемся к тому времени новых полупроводниковых материалах – арсениде галлия и антимониде галлия. Однако в 1969 г. оставила полупроводниковую промышленность и занялась преподаванием – получила должность доцента кафедры «Полупроводниковые приборы» в Институте стали и сплавов. Там вела курс «Технология полупроводниковых приборов» и написала ряд учебных пособий, по лекционному курсу, по курсовому проектированию и лабораторному практикуму. Руководила работами аспирантов; девять из них защитили кандидатские диссертации.


С.Г. Мадоян и А.В. Красилов

После войны В.Е. Лошкарёв возобновил исследования и в начале 1950-х годов изготовил первые точечные транзисторы в лабораторных условиях. Научные заслуги Лашкарева были оценены: он возглавил новый Институт полупроводников АН Украины, который был открыт в 1960 г.


Советские транзисторы П1А и П3А(с радиатором). 1957 г.

В начале 1950-х в НИИ-160 Ф. А. Щиголь(который также, как и С.Г. Мадоян, был дипломником у А.В. Красилова) и Н. Н. Спиро ежедневно выпускали десятки точечных транзисторов типа С1-С4, а М. М. Самохвалов разрабатывал в НИИ-35 новые решения по групповой технологии, технологии "вплавления - диффузии" для получения тонкой базы ВЧ-транзисторов. В 1953 г. на основе исследований термоэлектрических свойств полупроводников А. Ф. Иоффе создал серию термоэлектрогенераторов, а в НИИ-35 были изготовлены планарные транзисторы П1, П2, П3. Вскоре в лаборатории С. Г. Калашникова был получен германиевый транзистор для частот 1,0 - 1,5 МГц, а Ф. А. Щиголь сконструировал кремниевые сплавные транзисторы типа П501-П503.

Феликс Анатольевич Щиголь стал лауреатом Ленинской премии за развитие полупроводниковой промышленности. Среди его заслуг - создание стандартного для отрасли маломощного универсального кремниевого планарного транзистора 2Т312, который вместе со множеством своих производных производится до сих пор.


Создатель первых кремниевых планарных транзисторов Феликс Анатольевич Щиголь

В 1957 г. советская промышленность выпустила 2,7 млн. транзисторов. Начавшееся создание и развитие ракетной и космической техники, а затем и вычислительных машин, а также потребности приборостроения и других отраслей экономики полностью удовлетворялись транзисторами и другими электронными компонентами отечественного производства.

Вот что С.Г. Мадоян говорит про создание советской полупроводниковой промышленности:


Примерно в 1960-м году началась передача работ на новые заводы. Тогда возникло много полупроводниковых заводов, но каким-то странным образом: в Таллине полупроводниковое производство организовали на бывшей спичечной фабрике, в Брянске – на базе старой макаронной фабрики – новую макаронную построили, а старую отдали под производство полупроводниковых приборов. В Риге под завод полупроводниковых приборов отвели здание физкультурного техникума. Так что, начальные работы везде были тяжёлые, я помню, что в первую командировку в Брянске я искала макаронный завод и попала на новую макаронную фабрику, там мне объяснили, что есть ещё вот старая фабрика, и на старой фабрике я чуть ногу не сломала, оступившись в луже, причём на полу в коридоре, который вёл в кабинет директора.
Тогда началось производство самого массового вида приборов – маломощных германиевых транзисторов и в Новгороде Великом, а потом уже стали строить новые заводы. Сначала места для развёртывания производства выбирались так, чтобы была готовая инфраструктура, в городах, в которых людям хотелось жить, туда можно было набирать работников, а потом полупроводниковые заводы стали строить, ну, например, в Запорожье, потому что мы использовали в основном женский труд на всех сборочных участках, а в Запорожье было много безработных женщин. Ну, вот таким образом мы расширялись и продвигались.

Изобретатели : Уильям Шокли, Джон Бардин и Уолтер Браттейн
Страна : США
Время изобретения : 1948 г.

Изобретение в конце 40-х годов XX века транзистора стало одной из крупнейших вех в истории электроники. , которые до этого в течение долгого времени были непременным и главнейшим элементом всех радио - и электронных устройств, имели много недостатков.

По мере усложнения радиоаппаратуры и повышения общих требований к ней, эти недостатки ощущались все острее. К ним нужно отнести, прежде всего, механическую непрочность ламп, малый срок их службы, большие габариты, невысокий КПД из-за больших тепловых потерь на аноде.

Поэтому, когда на смену вакуумным лампам во второй половине XX века пришли полупроводниковые элементы, не обладавшие ни одним из перечисленных изъянов, в радиотехнике и электронике произошел настоящий переворот.

Надо сказать, что полупроводники далеко не сразу открыли перед человеком свои замечательные свойства. Долгое время в электротехнике использовались исключительно проводники и диэлектрики. Большая группа материалов, занимавших промежуточное положение между ними, не находила никакого применения, и лишь отдельные исследователи, изучая природу электричества, время от времени проявляли интерес к их электрическим свойствам.

Так, в 1874 году Карл Фердинанд Браун обнаружил явление выпрямления тока в месте контакта свинца и пирита и создал первый кристаллический детектор. Другими исследователями было установлено, что существенное влияние на проводимость полупроводников оказывают содержащиеся в них примеси. Например, Беддекер в 1907 году обнаружил, что проводимость йодистой меди возрастает в 24 раза при наличии примеси йода, который сам по себе не является проводником.

Чем же объясняются свойства полупроводников и почему они приобрели столь большое значение в электронике? Возьмем такой типичный полупроводник, как германий. В обычных условиях он имеет удельное сопротивление в 30 миллионов раз больше, чем у меди, и в 1000000 миллионов раз меньше, чем у . Следовательно, по своим свойствам он все же несколько ближе к проводникам, чем к диэлектрикам. Как известно, способность того или иного вещества проводить или не проводить электрический ток зависит от наличия или отсутствия в нем свободных заряженных частиц.

Германий в этом смысле не является исключением. Каждый его атом четырехвалентен и должен образовывать с соседними атомами четыре электронных связи. Но благодаря тепловому воздействию некоторая часть электронов покидает свои атомы и начинает свободно перемещаться между узлами кристаллической решетки. Это примерно 2 электрона на каждые 10 миллиардов атомов.

В одном грамме германия содержится около 10 тысяч миллиардов атомов, то есть в нем имеется около 2 тысяч миллиардов свободных электронов. Это в миллионы раз меньше, чем, например, в меди или серебре, но все же, достаточно для того, чтобы германий мог пропускать через себя небольшой ток. Однако, как уже говорилось, проводимость германия можно значительно повысить, если ввести в состав его решетки примеси, например, пятивалентный атом мышьяка или сурьмы.

Тогда четыре электрона мышьяка образуют валентные связи с атомами германия, но пятый останется свободен. Он будет слабо связан с атомом, так что небольшого напряжения, приложенного к кристаллу, будет достаточно для того, чтобы он оторвался и превратился в свободный электрон (понятно, что атомы мышьяка при этом становятся положительно заряженными ионами). Все это заметно меняет электрические свойства германия.

Другая картина будет в том случае, когда в кристалл германия вводится трехвалентная примесь (например, алюминий, галлий или индий). Каждый атом примеси образует связи только с тремя атомами германия, а на месте четвертой связи останется свободное место - дырка, которую легко может заполнить любой электрон (при этом атом примеси ионизируется отрицательно).

Если этот электрон перейдет к примеси от соседнего атома германия, то дырка будет в свою очередь у последнего. Приложив к такому кристаллу напряжение, получим эффект, который можно назвать «перемещением дырок». Действительно, пусть с той стороны, где находится отрицательный полюс внешнего источника, электрон заполнит дырку трехвалентного атома. Следовательно, электрон приблизится к положительному полюсу, тогда как новая дырка образуется в соседнем атоме, расположенном ближе к отрицательному полюсу.

Затем происходит это же явление с другим атомом. Новая дырка в свою очередь заполнится электроном, приближающимся таким образом к положительному полюсу, а образовавшаяся за этот счет дырка приблизится к отрицательному полюсу. И когда в итоге такого движения электрон достигнет положительного полюса, откуда он направится в источник тока, дырка достигнет отрицательного полюса, где она заполнится электроном, поступающим из источника тока. Дырка перемещается так, словно это частица с положительным зарядом, и можно говорить, что здесь электрический ток создается положительными зарядами. Такой полупроводник называют полупроводником p-типа (от positiv - положительный).

Само по себе явление примесной проводимости еще не имеет большого значения, но при соединении двух полупроводников - одного с n-проводимостью, а другого с p-проводимостью (например, когда в кристалле германия с одной стороны создана n-проводимость, а с другой - p-проводимость) - происходят очень любопытные явления.

Отрицательно ионизированные атомы области p оттолкнут от перехода свободные электроны области n, а положительно ионизированные атомы области n оттолкнут от перехода дырки области p. То есть p-n переход превратится в своего рода барьер между двумя областями. Благодаря этому кристалл приобретет ярко выраженную одностороннюю проводимость: для одних токов он будет вести себя как проводник, а для других - как изолятор.

В самом деле, если приложить к кристаллу напряжение большее по величине, чем «запорное» напряжение p-n перехода, причем таким образом, что положительный электрод будет соединен с p-областью, а отрицательный - с n-областью, то в кристалле будет протекать электрический ток, образованный электронами и дырками, перемещающимися навстречу друг другу.

Если же потенциалы внешнего источника поменять противоположным образом, ток прекратится (вернее, он будет очень незначительным) - произойдет только отток электронов и дырок от границы разделения двух областей, вследствие чего потенциальный барьер между ними увеличится.

В данном случае полупроводниковый кристалл будет вести себя точно так же, как вакуумная лампа-диод, поэтому приборы, основанные на этом принципе, назвали полупроводниковыми диодами. Как и ламповые диоды, они могут служить детекторами, то есть выпрямителями тока.

Еще более интересное явление можно наблюдать в том случае, когда в полупроводниковом кристалле образован не один, а два p-n перехода. Такой полупроводниковый элемент получил название транзистора. Одну из его внешних областей именуют эмиттером, другую - коллектором, а среднюю область (которую обычно делают очень тонкой) - базой.

Если приложить напряжение к эмиттеру и коллектору транзистора, ток не будет проходить, как бы мы не меняли полярность. Но если создать небольшую разность потенциалов между эмиттером и базой, то свободные электроны из эмиттера, преодолев p-n переход, попадут в базу. А так как база очень тонкая, то лишь небольшого количества этих электронов хватит для заполнения дырок, находящихся в области p. Поэтому большая часть их пройдет в коллектор, преодолев запирающий барьер второго перехода - в транзисторе возникнет электрический ток.

Это явление тем более замечательно, что ток в цепи эмиттер-база обычно в десятки раз меньше того, который протекает в цепи эмиттер-коллектор Из этого видно, что по своему действию транзистор можно в известном смысле считать аналогом трехэлектродной лампы (хотя физические процессы в них совершенно различны), причем база играет здесь роль сетки, помещающейся между анодом и катодом.

Точно так же, как в лампе, небольшое изменение потенциала сетки вызывает значительное изменение анодного тока, в транзисторе слабые изменения в цепи базы вызывают значительные изменения тока коллектора. Следовательно, транзистор может использоваться в качестве усилителя и генератора электрических сигналов.

Полупроводниковые элементы начали постепенно вытеснять электронные лампы с начала 40-х годов. С 1940 года широкое применение в радиолокационных устройствах получил точечный германиевый диод. Радиолокация вообще послужила стимулом для быстрого развития электроники мощных источников высокочастотной энергии. Все больший интерес проявлялся к дециметровым и сантиметровым волнам, к созданию электронных приборов, способных работать в этих диапазонах.

Между тем электронные лампы при использовании их в области высоких и сверхвысоких частот вели себя неудовлетворительно, так как собственные шумы существенно ограничивали их чувствительность. Применение на входах радиоприемников точечных германиевых диодов позволило резко снизить собственные шумы, повысить чувствительность и дальность обнаружения объектов.

Однако подлинная эра полупроводников началась уже после Второй мировой войны, когда был изобретен точечный транзистор.

Его создали после многих опытов в 1948 году сотрудники американской фирмы «Белл» Уильям Шокли, Джон Бардин и Уолтер Браттейн. Расположив на германиевом кристалле, на небольшом расстоянии друг от друга, два точечных контакта и подав на один из них прямое смещение, а на другой - обратное, они получили возможность с помощью тока, проходившего через первый контакт, управлять током через второй. Этот первый транзистор имел коэффициент усиления порядка 100.

Новое изобретение быстро получило широкое распространение. Первые точечные транзисторы состояли из германиевого кристалла с n-проводимостью, служившего базой, на которую опирались два тонких бронзовых острия, расположенные очень близко друг к другу - на расстоянии нескольких микрон.

Одно из них (обычно бериллиевая ) служило эмиттером, а другое (из фосфорной бронзы) - коллектором. При изготовлении транзистора через острия пропускался ток силой примерно в один ампер. Германий при этом расплавлялся, так же как кончики остриев. Медь и имеющиеся в ней примеси переходили в германий и образовывали в непосредственной близости от точечных контактов слои с дырочной проводимостью.

Эти транзисторы не отличались надежностью из-за несовершенства своей конструкции. Они были нестабильны и не могли работать при больших мощностях. Стоимость их была велика. Однако они были намного надежнее вакуумных ламп, не боялись сырости и потребляли мощности в сотни раз меньшие, чем аналогичные им электронные лампы.

Вместе с тем они были чрезвычайно экономичны, так как требовали для своего питания очень маленького тока порядка 0, 5-1 В и не нуждались в отдельной батарее. Их КПД достигал 70%, в то время как у лампы он редко превышал 10%. Поскольку транзисторы не требовали накала, они начинали работать немедленно после подачи на них напряжения. К тому же они имели очень низкий уровень собственных шумов, и поэтому аппаратура, собранная на транзисторах, оказывалась более чувствительной.

Постепенно новый прибор совершенствовался. В 1952 году появились первые плоские примесные германиевые транзисторы. Их изготовление было сложным технологическим процессом. Сначала германий очищали от примесей, а затем образовывали монокристалл. Обычный кусок германия состоит из большого числа сращенных в беспорядке кристаллов. Для полупроводниковых приборов такая структура материала не годится - здесь нужна исключительно правильная, единая для всего куска кристаллическая решетка. Для этого германий расплавляли и опускали в него затравку - маленький кристалл, с правильно ориентированной решеткой.

Вращая затравку вокруг оси, ее медленно приподнимали. Вследствие этого атомы вокруг затравки выстраивались в правильную кристаллическую решетку. Полупроводниковый материал затвердевал и обволакивал затравку. В результате получался монокристаллический стержень. Одновременно в расплав добавляли примесь p или n типа. Затем монокристалл резали на маленькие пластинки, которые служили базой.

Эмиттер и коллектор создавали различными способами. Наиболее простой метод состоял в том, что на обе стороны пластинки германия накладывали маленькие кусочки индия и быстро нагревали их до 600 градусов. При этой индий сплавлялся с находящимся под ним германием. При остывании насыщенные индием области приобретали проводимость p-типа. Затем кристалл помещали в корпус и присоединяли выводы.

В 1955 году фирмой «Белл систем» был создан диффузионный германиевый транзистор. Метод диффузии состоял в том, что пластинки полупроводника помещали в атмосферу газа, содержащего пары примеси, которая должна была образовать эмиттер и коллектор, и нагревали пластинки до температуры, близкой к точке плавления. Атомы примесей при этом постепенно проникали в полупроводник.